11-Mar-2021 - Max-Planck-Institut für Quantenoptik

Innovative Blood Test Based on Infrared Light

Monitoring health and detect disorders at an early stage

A new study carried out by a team of laser physicists, molecular biologists and physicians based at LMU Munich and the Max Planck Institute for Quantum Optics has confirmed the temporal stability of the molecular composition of blood in a population of healthy individuals. The data provide a basis for a new method of monitoring the constituents of blood and detecting alterations that reveal changes in a person’s state of health.

The molecular composition of the blood provides information regarding one’s state of health, and may be compared to an individual fingerprint. In principle, changes in the constituents of blood can serve as early signs of disease. However, before chemical fingerprints can be utilized for diagnostic purposes, the stability of the molecular patterns in healthy persons over time must be firmly established. Researchers under the direction of Dr. Mihaela Žigman, Head of the Broadband Infrared Diagnostics (BIRD) group in the Department of Laser Physics led by Prof. Ferenc Krausz at LMU Munich and the Max Planck Institute of Quantum Optics (MPQ), in collaboration with Prof. Dr. Nadia Harbeck at the LMU Medical Centre, have now successfully accomplished this task. With the aid of a method known as Fourier-transform infrared spectroscopy (FTIR), the team has shown that the molecular composition of blood samples obtained from a cohort of healthy donors remains stable over a period of several months, and confirmed that each of the resulting spectra could be clearly assigned to an individual person.

Rapid diagnosis of human diseases is a long standing problem in medicine. As diseases often alter molecular make-up of circulating body fluids, obtaining a snapshot of their molecular composition would be invaluable in detecting a multitude of diseased states, and the types and concentrations of the many molecules found in the bloodstream can provide vital information on a person’s health. The real challenge, however, comes when one tries to determine exact composition of body fluids, given that the concentrations of informative molecules are often extremely low. The interdisciplinary BIRD team led by Dr. Mihaela Žigman in Prof. Dr. Ferenc Krausz’s department at LMU, in collaboration with Prof. Dr. Nadia Harbeck at the LMU Medical Centre, has now investigated the stability of the chemical make-up of blood samples over days, weeks and even months.

Based on Fourier-transform infrared measurements (FTIR), the researchers analysed the molecular fingerprints of serum and plasma samples obtained from 31 healthy individuals over the clinically relevant period of 6 months. The study demonstrated that the infrared molecular fingerprint of each individual donor in fact remained stable over periods ranging from a few days to weeks and months, and each temporal profile could be readily attributed to the participant concerned.

“This newly revealed temporal stability of blood-based infrared fingerprints provides a basis for future applications of minimally invasive infrared spectroscopy as a reliable method for the future of health monitoring,” says Mihaela Žigman, leader of the research group.

Standard Fourier-transform infrared spectroscopy, which uses conventional light sources, could soon be replaced by chemical analyses based on infrared lasers. Given the much higher intensity of laser light, the latter method should be more sensitive and precise, and should therefore yield more detailed and informative characterizations of the molecular constituents of blood.

The physicists in the attoworld team, led by Prof. Ferenc Krausz, are now working on the laser technologies necessary to achieve this aim. Exposure to intense infrared light causes molecules to vibrate and emit light at specific frequencies, which depend on the chemical structures of the molecules within the sample. Analysis of the components of the resulting spectrum of electromagnetic oscillations enables researchers to assign them to the many types of molecules present in body fluids. As Prof. Krausz and colleagues reported last year, the new method allows minuscule amounts of different classes of molecules to be spectroscopically detected.

“With our lasers, we can already detect electrical signals emitted by excited molecules with very high sensitivity,” Ferenc Krausz explains. “Such precise measurements of alterations in the molecular composition of body fluids, together with knowledge of the stable molecular fingerprint of healthy controls, opens up new analytical opportunities in biology and medicine,” says Marinus Huber, leading author of the study. “Our results reveal that it is possible to obtain informative, blood-based infrared fingerprints efficiently, repeatedly and in a minimally invasive manner.

The key, in this case, is that the analysis ought to be sensitive enough and sufficiently broad to cover a wide range of possible molecules (or types of molecules) - to be in position to monitor personal health and detect disorders at an early stage. Practically speaking, following-up a person’s health status regularly might become paramount for timely-detecting relevant deviations. In addition to its uses in the fields of health monitoring and preventive medicine, systems biology shall also benefit from the availability of the approach,” Mihaela Žigman adds.

Max-Planck-Institut für Quantenoptik

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • blood analysis
  • blood
More about MPI für Quantenoptik
  • News

    A nanokelvin microwave refrigerator for molecules

    Researchers at the Max Planck Institute of Quantum Optics have developed a novel cooling technique for molecular gases that allows polar molecules to be cooled down to a few nanokelvin. The trick used by the team in Garching to overcome this hurdle is based on a rotating microwave field. It ... more

    Most powerful dual-comb spectrometer developed

    Scientists from Hamburg and Munich developed the world's most powerful dual-comb spectrometer that paves the way for many applications in atmospheric science and biomedical diagnostics, such as early cancer detection. The work has recently been published in Nature Communications. The core p ... more

    The next phase of the proton puzzle

    Scientists at the Max Planck Institute of Quantum Optics (MPQ) have succeeded in testing quantum electrodynamics with unprecedented accuracy to 13 decimal places. The new measurement is almost twice as accurate as all previous hydrogen measurements combined and moves science one step closer ... more

More about Max-Planck-Gesellschaft
  • News

    High harmonics illuminate the movement of atoms and electrons

    Laser light can radically change the properties of solid materials, making them superconducting or magnetic within millionths of a billionth of a second. The intense light causes fundamental, immediate changes in a solid by ‘shaking’ its atomic lattice structure and moving electrons about. ... more

    How to find marker genes in cell clusters

    The thousands of cells in a biological sample are all different and can be analyzed individually, cell by cell. Based on their gene activity, they can be sorted into clusters. But which genes are particularly characteristic of a given cluster, i.e. what are its “marker genes”? A new statist ... more

    Microparticles with feeling

    An international research team headed by the Max Planck Institute for Marine Microbiology in Bremen, Aarhus University and the Science for Life Lab in Uppsala has developed tiny particles that measure the oxygen concentration in their surroundings. In this way, they can track fluid flow and ... more

More about LMU
  • News

    Comparison of two nano rulers

    In the Middle Ages, every city had its own system of measurement. Even today, you can sometimes find iron rods in marketplaces that determined the length measurement valid for the city at that time. In science, however, there is no room for such uncertainties, and no matter what method you ... more

    Most powerful dual-comb spectrometer developed

    Scientists from Hamburg and Munich developed the world's most powerful dual-comb spectrometer that paves the way for many applications in atmospheric science and biomedical diagnostics, such as early cancer detection. The work has recently been published in Nature Communications. The core p ... more

    Finding the invisible

    Higher organisms store their genetic material in the nuclei of cells as deoxyribonucleic acid (DNA). In a process called transcription, individual segments, the genes, are converted into messenger ribonucleic acids (mRNAs). Subsequently, the translation process produces proteins as the most ... more