11.03.2021 - Max-Planck-Institut für Quantenoptik

Neuartige Blutuntersuchung mittels Infrarotlicht

Überwachung des Gesundheitszustands und Früherkennung von Krankheiten möglich

Ein Team aus Laserphysikern, Molekularbiologen und Medizinern der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik hat die zeitliche Konstanz der molekularen Zusammensetzung im Blut von gesunden Testpersonen untersucht. Die Ergebnisse dienen als Grundlage, Veränderungen im Molekülmix des Blutes für eine mögliche Überwachung des Gesundheitszustandes zu identifizieren.

Die Zusammensetzung der Moleküle in unserem Blut ist einzigartig, vergleichbar zu einem Fingerabdruck eines Menschen. Verändert sich jedoch der Mix der Moleküle im Organismus könnte dies ein Hinweis darauf sein, dass er erkrankt ist. Voraussetzung einer solchen Diagnose ist es aber, vorab zu wissen ob der so genannte „molekulare Fingerabdruck“ eines Menschen im gesunden Zustand zuvor über längere Zeit stabil war. Eine solche Langzeitstabilität bei gesunden Personen hat nun das Team „Broadband Infrared Diagnostics“ (BIRD) um die Biologin Dr. Mihaela Žigman vom Lehrstuhl für Laserphysik von Prof. Ferenc Krausz am Ludwig-Maximilians-Universität München (LMU) und dem Max-Planck-Institut für Quantenoptik (MPQ) in der Zusammenarbeit mit der Medizinerin Prof. Dr. Nadia Harbeck vom LMU Klinikum mit Fourier-Transform Infrarotmessungen (FTIR) nachgewiesen. Die Forscher zeigten, dass die molekulare Zusammensetzung im Blut einzelner gesunder Personen über mehrere Monate stabil war und sogar individuell zugeordnet werden konnte.

Moleküle in unserer Blutbahn können Aufschluss über unseren Gesundheitszustand geben, vor allem dann, wenn sich deren typische Zusammensetzung verändert. Die große Kunst ist es jedoch, diesen Molekülmix exakt zu analysieren, denn manchmal sind die Konzentrationen von spezifischen Molekülen extrem gering. Nun hat das interdisziplinäre BIRD-Team unter der Leitung von Dr. Mihaela Žigman aus der Abteilung von Prof. Dr. Ferenc Krausz an der LMU in Zusammenarbeit mit der Medizinerin Prof. Dr. Nadia Harbeck vom Klinikum der LMU untersucht, wie stabil die Zusammensetzung der Moleküle im Blut bei gesunden Probanden über die Zeit ist.

Mit Hilfe von Fourier-Transform Infrarotmessungen (FTIR) haben die Forscher Fingerabdrücke von Blutserum- und Plasmaproben von 31 gesunden Personen über den klinisch relevanten Zeitraum von einem halben Jahr lang untersucht. Dabei zeigte sich, dass der molekulare Fingerabdruck eines jeden Probanden über einige Tage, Wochen und sogar Monate stabil war und individuell zugeordnet werden konnte.
„Diese bisher unbekannte zeitliche Stabilität einzelner biochemischer Fingerabdrücke bildet die Grundlage für künftige Anwendungen des blutbasierten Infrarot-Spektral-Fingerabdrucks als verlässliche Art der Gesundheitsüberwachung“, freut sich BIRD-Gruppenleiterin Mihaela Žigman.

Fourier-Transform Infrarotmessungen, die mit konventionellem Licht arbeiten, könnten künftig von Infrarotlaser-basierten Messungen abgelöst werden. Diese Art der Analyse von Molekülen im Blut wäre aufgrund der enormen Stärke des Laserlichts exakter als die bisher verwendete FTIR-Methode. An entsprechenden Lasertechnologien arbeiten die Physiker im attoworld-Team von Prof. Ferenc Krausz. Mit Hilfe einer neu entwickelten Infrarot-Lasertechnologie bringen die attoworld-Forscher Moleküle zum Schwingen und damit zum eigenständigen Aussenden von Licht. Diese elektromagnetischen Schwingungen ordnen die Forscher präzise den Bestandteilen der Bioflüssigkeiten zu. So detektieren sie spektroskopisch selbst winzige Konzentrationen einzelner Molekülarten.

„Mit unseren Lasern können wir bereits elektrische Signale aus Molekülen mit einer sehr hohen Empfindlichkeit nachweisen“, erklärt Ferenc Krausz. „Diese präzise Messung von Veränderungen in der molekularen Zusammensetzung von Körperflüssigkeiten, gepaart mit dem Wissen über den stabilen Molekularen Fingerabdruck bei gesunden Menschen, eröffnet neue Möglichkeiten in der Biologie und Medizin.“, erklärt Marinus Huber, der Erstautor der Studie. „Diese Ergebnisse demonstrieren die Möglichkeit von effizienten, wiederholten und minimal-invasiven Messungen von blutbasierten Infrarot-Fingerabdrücken und bilden damit die Grundlage für zukünftige Anwendungen zur Überwachung des menschlichen Gesundheitszustands und damit zur Früherkennung von Krankheiten. Damit eröffnen sich neue Möglichkeiten für die Zukunft der Systembiologie und des Gesundheitswesens und tragen dazu bei, die Zukunft der präventiven modernen Medizin zu gestalten.“ ergänzt Mihaela Žigman.

Max-Planck-Institut für Quantenoptik

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Blutanalyse
  • Blut
Mehr über MPI für Quantenoptik
  • News

    Das Protonenrätsel geht in die nächste Runde

    Wissenschaftlern am Max-Planck-Institut für Quantenoptik (MPQ) ist es gelungen, die Quantenelektrodynamik mit bis dahin unerreichter Genauigkeit auf 13 Nachkommastellen zu testen. Die neue Messung des 1S-3S Übergangs im atomaren Wasserstoff ergibt einen Protonenradius fast doppelt so genau ... mehr

    Neuartiges Lichtmikroskop mit einer Auflösung von einigen zehn Pikometern

    Lichtmikroskope ermöglichen es uns, winzige Objekte wie lebende Zellen sehen zu können. Bislang ist es nicht möglich, die viel kleineren Elektronen zwischen den Atomen in Festkörpern zu beobachten. Wissenschaftler aus den Arbeitsgruppen von Professor Eleftherios Goulielmakis vom Institut fü ... mehr

    Unverwechselbarer molekularer Fingerabdruck

    In Organismen zirkulieren die verschiedensten Arten von Molekülen. Der Stoffwechsel lässt in den Zellen ständig verschiedenste neue Moleküle entstehen, die auch in die Umgebung, etwa in das Blut, abgegeben werden. Eines der großen Ziele der Biomedizin ist es, diesen Molekülmix detailliert z ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Mehr als die Summe der Mutationen

    Ein neuer Algorithmus sagt Gene vorher, die an der Entstehung von Krebs beteiligt sein können, deren DNA-Sequenz jedoch nicht zwangsläufig verändert ist. Ein Berliner Forschungsteam hat unterschiedlichste Daten kombiniert, sie mit „künstlicher Intelligenz“ analysiert und so zahlreiche Krebs ... mehr

    Schnellerer Sequenzabgleich für den gesamten Baum des Lebens

    Ein Forscherteam vom Max-Planck-Institut für Entwicklungsbiologie in Tübingen und der Max Planck Computing and Data Facility in Garching entwickelt neue Suchmöglichkeiten, die Vergleiche des biochemischen Aufbaus verschiedener Arten in unterschiedlichen Zweigen des Baums des Lebens ermöglic ... mehr

    Neue Mikroskopie-Methode löst Fluoreszenzmoleküle nanometergenau auf

    Wissenschaftler um Stefan Hell vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und dem Heidelberger MPI für medizinische Forschung haben eine neue Lichtmikroskopie-Methode entwickelt, MINSTED genannt. Sie trennt fluoreszenzmarkierte Details mit molekularer Schärfe. Für N ... mehr

Mehr über LMU
  • News

    Per Smartphone einzelne Moleküle detektieren und Krankheiten erkennen

    Um Krankheiten zu erkennen oder um deren Verlauf zu beurteilen, spielen Biomarker eine zentrale Rolle. Dazu zählen beispielsweise Gene, Proteine, Hormone, Lipide oder andere Moleküle. Sie kommen im Blut, im Liquor, im Urin oder in unterschiedlichen Gewebetypen vor, haben aber eine Gemeinsam ... mehr

    Fluoreszenzmikroskopie mit höchster Auflösung

    Erst vor wenigen Jahren wurde eine fundamental erscheinende Auflösungsgrenze der optischen Mikroskopie gesprengt, was 2014 zur Verleihung des Nobelpreises für Chemie führte. Seither hat es auf dem Gebiet der superauflösenden Mikroskopie einen weiteren Quantensprung gegeben, der die Auflösun ... mehr

    Dynamische Nanowelt im Fokus

    Physiker der Universität Konstanz, der Ludwig-Maximilians-Universität München (LMU München) und der Universität Regensburg haben experimentell nachgewiesen, dass ultrakurze Elektronenpulse durch die Interaktion mit Lichtwellen in nanophotonischen Materialien eine quantenmechanische Phasenve ... mehr