21-Apr-2020 - Max-Planck-Institut für molekulare Zellbiologie und Genetik

The lipid code

New chemical tools can control the concentration of lipids in living cells

Lipids, or fats, have many functions in our body: They form membrane barriers, store energy or act as messengers, which regulate cell growth and hormone release. Many of them are also biomarkers for severe diseases. So far, it has been very difficult to analyze the functions of these molecules in living cells. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden and the Leibniz Research Institute for Molecular Pharmacology (FMP) in Berlin have now developed chemical tools that can be activated by light and used to influence lipid concentration in living cells. This approach could enable medical doctors to work with biochemists to identify what molecules within a cell actually do. The study was published in the journal PNAS.

Every cell can create thousands of different lipids (fats). However, little is known how this chemical lipid diversity contributes to the transport of messages within the cell, in other words, the lipid code of the cell is still unknown. This is mainly due to the lack of methods to quantitatively study lipid function in living cells. An understanding of how lipids work is very important because they control the function of proteins throughout the cell and are involved in bringing important substances into the cell through the cell membrane. In this process it is fascinating that only a limited number of lipid classes on the inside of the cell membrane act as messenger molecules, but they receive messages from thousands of different receptor proteins. It is still not clear, how this abundance of messages can still be easily recognized and transmitted.

The research groups led by André Nadler at the MPI-CBG and Alexander Walter at the FMP, in collaboration with the TU Dresden, have developed chemical tools to control the concentration of lipids in living cells. These tools can be activated by light. Milena Schuhmacher, the lead author of the study, explains: "Lipids are actually not individual molecular structures, but differ in tiny chemical details. For example, some have longer fatty acid chains and some have slightly shorter ones. Using sophisticated microscopy in living cells and mathematical modelling approaches, we were able to show that the cells are actually able to recognize these tiny changes through special effector proteins and thus possibly use them to transmit information. It was important that we were able to control exactly how much of each individual lipid was involved." André Nadler, who supervised the study, adds: "These results indicate the existence of a lipid code that cells use to re-encode information, detected on the outside of the cell, on the inner side of the cell."

The results of the study could enable membrane biophysicists and lipid biochemists to verify their results with quantitative data from living cells. André Nadler adds: "Clinicians could also benefit from our newly developed method. In diseases such as diabetes and high blood pressure, more lipids that act as biomarkers are found in the blood. This can be visualized with a lipid profile. With the help of our method, doctors could now see exactly what the lipids are doing in the body. That wasn't possible before."

Max-Planck-Institut für molekulare Zellbiologie und Genetik

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • lipids
  • fats
More about MPI für molekulare Zellbiologie und Genetik
  • News

    A new era of genome sequencing

    The international Vertebrate Genomes Project (VGP) publishes their flagship study focused on genome assembly quality and standardization for the field of genomics in a special issue of Nature, along with 20 associated publications. This study presents 16 diploid high-quality, near error-fre ... more

    The genetic basis of bats’ superpowers revealed

    For the first time, the raw genetic material that codes for bats’ unique adaptations and superpowers such as the ability to fly, to use sound to move effortlessly in complete darkness, to survive and tolerate deadly diseases, to resist ageing and cancer - has been fully revealed. Bat1K, a g ... more

    Let’s build a cell

    Cells are the basic unit of life. They provide an environment for the fundamental molecules of life to interact, for reactions to take place and sustain life. However, the biological cell is very complicated, making it difficult to understand what takes place inside it. One way to tackle th ... more

More about Max-Planck-Gesellschaft
  • News

    Structure of key protein for cell division puzzles researchers

    Human cell division involves hundreds of proteins at its core. Knowing the 3D structure of these proteins is pivotal to understand how our genetic material is duplicated and passed through generations. The groups of Andrea Musacchio and Stefan Raunser at the Max Planck Institute of Molecula ... more

    A new method for exploring the nano-world

    Scientists at the Max Planck Institute for the Science of Light (MPL) and Max-Planck-Zentrum für Physik und Medizin (MPZPM) in Erlangen present a large step forward in the characterization of nanoparticles. They used a special microscopy method based on interfereometry to outperform existin ... more

    Finding new weapons in Nature`s battlesites

    Interactions between microbes and other organisms are mediated by a plethora of small molecules, also called natural products. A research team led by Dr. Yi-Ming Shi and Prof. Helge Bode from the Max Planck Institute for Terrestrial Microbiology has now performed a systematic analysis of bi ... more