02-Dec-2009 - Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Scientists demonstrate multibeam, multi-functional lasers

Adaptable technology opens the door to a wide range of applications in chemical detection, climate monitoring and communications

An international team of applied scientists from Harvard, Hamamatsu Photonics, and ETH Zürich have demonstrated compact, multibeam, and multi-wavelength lasers emitting in the invisible part of the light spectrum (infrared). By contrast, typical lasers emit a single light beam of a well-defined wavelength. The innovative multibeam lasers have potential use in applications related to remote chemical sensing pollution monitoring, optical wireless, and interferometry.

The research was led by postdoctoral researcher Nanfang Yu and Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, both at the Harvard School of Engineering and Applied Sciences (SEAS); Hirofumi Kan, General Manager of the Laser Group at Hamamatsu Photonics; and Jérôme Faist, Professor at ETH Zürich. The findings appeared online in the October 23 issue of Applied Physics Letters and will appear as a December 7 cover story.

"We have demonstrated devices that can create highly directional laser beams pointing in different directions either at the same or at different wavelengths," says Capasso. "This could have major implications for parallel high-throughput monitoring of multiple chemicals in the atmosphere or on the ground and be used, for example, for studying hazardous trace gases and aerosols, monitoring greenhouse gases, detecting chemical agents on the battlefield, and mapping biomass levels in forests."

The more versatile laser is a descendant of the quantum cascade laser (QCL), invented and first demonstrated by Capasso, Faist, and their collaborators at Bell Labs in 1994. Commercially available QCLs, made by stacking ultra-thin atomic layers of semiconductor materials on top of one another, can be custom designed to emit a well -defined infrared wavelength for a specific application or be made to emit simultaneously multiple wavelengths. To achieve multiple beams, the researchers patterned the laser facet with metallic structures that behave as highly directional antennas and then beam the light in different directions.

"Having multibeam and multi-wavelength options will provide unprecedented flexibility. The ability to emit multiple wavelengths is ideal for generating a quantitative map of the concentration of multiple chemicals in the atmosphere," explains Kan. "Profiles of these atmospheric components—as a function of altitude or location—are critically important for environmental monitoring, weather forecasting, and climate modeling."

Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • lasers
  • Hamamatsu Photonics
  • ETH Zürich
  • Greenhouse Gases
  • gases
  • Facet
More about ETH Zürich
  • News

    Monitoring gene activities in living cells

    Researchers from ETH Zurich and EPFL are expanding the emerging field of single-​cell analysis with a ground-​breaking method: Live-​seq makes it possible to measure the activity of thousands of genes in a single cell without having to isolate and destroy it. Modern biology is increasingly ... more

    Imaging the brain with ultrasound waves

    Both ultrasound for medical imaging and seismology for imaging the Earth's interior measure the propagation of waves through matter. For example, when seismic waves encounter material differences in the Earth's interior, such as between different rock formations, they are reflected and refr ... more

    Attosecond measurement on electrons in water clusters

    Researchers at ETH Zurich have developed a method that enables time-​resolved measurements of electron motion in water clusters lasting only a few attoseconds. The technique can be used for more detailed studies of water as well as faster electronics. Virtually all vital chemical processes ... more

More about Harvard University
  • News

    Nanotechnology enables visualization of RNA structures at near-atomic resolution

    We live in a world made and run by RNA, the equally important sibling of the genetic molecule DNA. In fact, evolutionary biologists hypothesize that RNA existed and self-replicated even before the appearance of DNA and the proteins encoded by it. Fast forward to modern day humans: science h ... more

    Customized programming of human stem cells

    Induced pluripotent stem cells (iPS) have the potential to convert into a wide variety of cell types and tissues. However, the "recipes" for this conversion are often complicated and difficult to implement. Researchers at the Center for Regenerative Therapies Dresden (CRTD) at TU Dresden, H ... more

    Separating Drugs with MagLev

    The composition of suspicious powders that may contain illicit drugs can be analyzed using a quick and simple method called magneto-Archimedes levitation (MagLev), according to a new study published in the journal Angewandte Chemie. A team of scientists at Harvard University, USA, has devel ... more

  • Videos

    A diamond radio receiver

    Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences have made the world’s smallest radio receiver – built out of an assembly of atomic-scale defects in pink diamonds. This tiny radio — whose building blocks are the size of two atoms — can withstand extrem ... more

More about Hamamatsu Photonics