01.03.2007 - Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

Für Elektronen unsichtbar

Dünner geht es nicht mehr: Nur so dick wie ein einzelnes Atom sind die Kohlenstoffmembranen, die Max-Planck-Wissenschaftler jetzt hergestellt haben. Solche Membranen sind für Elektronen fast völlig durchsichtig - Wissenschaftler könnten also auf den Membranen adsorbierte einzelne Moleküle im Elektronmikroskop untersuchen und die atomare Struktur komplexer bioaktiver Moleküle sichtbar machen. Und auch um Gase zu filtern, könnten solche hauchdünnen Membranen eingesetzt werden . Forscher vom Stuttgarter Max-Planck Institut für Festkörperforschung und der Universität Manchester haben die dünnsten Membranen hergestellt, die überhaupt möglich sind: Sie bestehen nur aus einer einzigen Lage Kohlenstoffatome, dem sogenannten Graphen. Obwohl die Membranen so dünn sind, zeigen sie eine erstaunlich hohe Stabilität. Der Grund dafür ist, dass die Graphen-Schichten nicht perfekt flach, sondern leicht gewellt sind. Diese Form macht das ultradünne Material stabil - vergleichbar der Wellpappe. "Zweidimensionale Membranen sind völlig anders als herkömmliche dreidimensionale Kristalle", sagt Dr. Jannik Meyer vom Max-Planck-Institut für Festkörperforschung. "Wir fangen gerade erst an, ihre grundlegenden Eigenschaften zu entdecken und mögliche Anwendungen zu untersuchen."

Bereits vor zwei Jahren hatten Wissenschaftler eine neue Klasse von atomar dünnen Materialien entdeckt, die sich am besten als isolierte und heraus getrennte Ebenen eines Kristalls beschreiben lassen. Diese Schichten sind in kürzester Zeit zu einem der spannendsten Themen der Physik geworden. Kontrovers diskutiert wurde vor allem die Frage, ob diese Materialien ohne ein stützendes Substrat existieren können.

Jetzt hat das Forscherteam genau solche selbsttragenden Membranen hergestellt - nämlich aus einer einzelnen Lage aus Kohlenstoffatomen, dem sogenanntem Graphen. Um Graphen herzustellen, benötigt man im Grunde nur einen Bleistift: Denn beim Reiben von gewöhnlichem Graphit auf einer Unterlage trennen sich Flocken mit unterschiedlicher Dicke aus diesem geschichteten Material heraus. Dabei entstehen unter anderem auch Schichten, die nur ein Atom dick sind. Um diese jedoch zu finden und weiterzuverarbeiten, nutzten die Wissenschaftler nun ein Verfahren, wie es auch in der Mikroprozessor-Fertigung eingesetzt wird: Als Unterlage verwendeten sie einen Silizium-Kristall mit einer Oxidschicht von genau justierter Dicke, denn nur so konnten die Forscher die Graphen-Monolagen im Mikroskop anhand ihrer ganz leicht veränderten Farbe erkennen. Dann legten sie ein Gitter aus feinsten Golddrähten darüber, deren Abstand 100-mal kleiner als der Durchmesser eines Haares ist. Im nächsten Schritt lösten sie das Silizium-Substrat in verschiedenen Chemikalien auf. Die Graphen-Schichten bleiben dabei an dem Gitter hängen. Ein auf diese Weise hergestelltes Stück Graphen-Membran zwischen den Golddrähten hat eine Fläche von etwa einem Quadratmikrometer, also nur einem Millionstel Quadratmillimeter. Doch diese Fläche enthält immerhin 30 Millionen Kohlenstoffatome, die alle nebeneinander in der freitragenden Membran liegen.

Diese hauchdünnen Membranen könnte man verwenden, um zum Beispiel Gase zu filtern, miniaturisierte ultra-schnelle elektromechanische Schalter zu bauen, oder um einzelne Moleküle, die auf der Membran adsorbiert sind, im Elektronenmikroskop abzubilden. "Dass hauchdünne Membranen von der Dicke nur eines Atoms hergestellt werden können, haben wir jetzt gezeigt. Und wir glauben, dass diese Technik auch für reale Anwendungen adaptiert werden kann," sagt Prof. Andre Geim von der Universität Manchester. "Es bleibt allerdings eine Herausforderung, diese Membranen preiswert und in großem Maßstab herzustellen".

Originalveröffentlichung: Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth; "The structure of suspended graphene sheets"; Nature 2007.

Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Graphen
  • Gase
  • Physik
  • Graphit
  • Chemikalien
Mehr über Max-Planck-Gesellschaft
  • News

    Hohe harmonische Schwingungen beleuchten atomare und elektronische Bewegungen in hBN

    Laserlicht kann die Eigenschaften fester Materialien radikal verändern und sie sehr schnell supraleitend oder magnetisch machen oder in andere Zustände versetzen. Das intensive Licht bewirkt diese Veränderungen innerhalb von Millionstel Milliardstel Sekunden, indem es die Atomgitterstruktur ... mehr

    Markergene in Zellclustern finden

    Die abertausenden Zellen in einer biologischen Probe sind alle individuell unterschiedlich und lassen sich einzeln analysieren. Anhand der Gene, die in ihnen aktiv sind, lassen sie sich in „Cluster“ zusammen sortieren. Aber welche Gene sind besonders charakteristisch für Cluster, was sind a ... mehr

    Mikropartikel mit Gefühl

    Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen ... mehr

Mehr über University of Manchester
  • News

    Graphen-Wissenschaftler fangen erste Bilder von in Flüssigkeit "schwimmenden" Atomen ein

    Graphen-Wissenschaftler der Universität Manchester haben eine neuartige "Nano-Petrischale" aus zweidimensionalen (2D) Materialien entwickelt, um eine neue Methode zur Beobachtung der Bewegung von Atomen in Flüssigkeiten zu schaffen Das Team, das von Forschern des National Graphene Institute ... mehr

    Neue Antibiotika durch Genmanipulation

    Wissenschaftler haben einen neuen Weg zur Herstellung komplexer Antibiotika entdeckt, bei dem das Gen-Editing genutzt wird, um die Wege für künftige Medikamente umzuprogrammieren, die zur Bekämpfung der Antibiotikaresistenz, zur Behandlung vernachlässigter Krankheiten und zur Verhinderung k ... mehr

    Kühlen mit Molekülen

    Ein internationales Wissenschaftler-Team hat es erstmals geschafft, mit magnetischen Molekülen Temperaturen unterhalb von minus 272,15 Grad Celsius – knapp über dem absoluten Nullpunkt – zu erreichen. Die Physiker und Chemiker stellen ihr neues Verfahren in Nature Communications vor. An der ... mehr

Mehr über MPI für Festkörperforschung
  • News

    Quantensprung im Film

    Um schnelle chemische Reaktionen besser zu verstehen und möglicherweise auch zu kontrollieren, muss man das Verhalten der Elektronen möglichst genau studieren – und zwar in Raum und Zeit. Bislang liefern Mikroskopieverfahren aber nur entweder räumlich oder zeitlich scharfe Bilder. Mit einer ... mehr

    Zucker im Profil

    Auf Zucker öffnet sich eine neue Perspektive. Ein Team um Wissenschaftler der Max-Planck-Institute für Festkörperforschung sowie für Kolloid- und Grenzflächenforschung haben mit einem Rastertunnelmikroskop erstmals abgebildet, wie einzelne Moleküle von Mehrfachzuckern gefaltet sind. Damit s ... mehr

    Das Higgs-Teilchen und die Supraleitung

    Ohne den Higgs-Mechanismus hätten Teilchen keine Masse. Daher wird das 2012 entdeckte Higgs-Teilchen auch Gottesteilchen genannt. Es entsteht als schwingende Anregung des Higgs-Feldes, das die Welt durchdringt. Interessanterweise zeigt Supraleitung ähnliche Eigenschaften. Ihre quantenmechan ... mehr