Weltweit stärkster Terahertz-Quantenkaskadenlaser
Ob bildgebende Diagnostik im Medizinbereich, Analyse unbekannter Substanzen oder ultraschnelle drahtlose Datenübertragung – Terahertzquellen sind in vielen Anwendungsbereichen gefragter denn je. An der TU Wien gelang nun ein technologischer Durchbruch.
Ein einsatzbereiter Terahertz-Quantenkaskadenlaser
TU Wien
Zwei Laser werden zu einem verbunden. Links ist das symmetrische Schichtsystem dargestellt
TU Wien
Sehen kann man sie nicht, die Terahertz-Wellen, doch Anwendungsideen gibt es genug. Sie durchdringen viele Materialien, die für sichtbares Licht undurchsichtig sind und eignen sich ausgezeichnet zum Aufspüren von zahlreichen Molekülen. Erzeugen lässt sich Terahertz-Licht mit Hilfe von Quantenkaskadenlasern, die nur wenige Millimeter groß sind. Diese ganz besondere Art von Lasern besteht aus maßgeschneiderten Halbleiterschichten im Nanometerbereich. An der TU Wien gelang nun ein neuer Weltrekord: Durch die spezielle Verschmelzung von symmetrischen Laserstrukturen konnte eine viermal so hohe Lichtleistung erzielt werden wie bisher.
Elektronensprünge erzeugen Terahertz-Licht
In jeder Schicht des Quantenkaskadenlasers können die Elektronen nur ganz bestimmte Energieniveaus annehmen. Legt man genau die richtige elektrische Spannung an, springen die Elektronen von Schicht zu Schicht und geben dabei jedes Mal Energie in Form von Licht ab. So lässt sich die exotische Terahertzstrahlung mit einer Wellenlänge im Submillimeterbereich (zwischen Mikrowellen- und Infrarot) effizient erzeugen.
Hohe Laserleistung für Science-Fiction-hafte Anwendungen
Viele Moleküle absorbieren Licht in diesem Wellenlängenbereich auf ganz charakteristische Weise, wodurch ein optischer Fingerabdruck entsteht. Dank dieser Eigenschaft kann Terahertz-Licht für chemische Detektoren eingesetzt werden. Auch für bildgebende Verfahren in der Medizin ist diese Strahlung hochinteressant: Einerseits hat sie weniger Energie als Röntgenstrahlung, ist also nicht ionisierend und daher ungefährlich, andererseits hat sie aber eine geringere Wellenlänge als Mikrowellenstrahlung, wodurch eine bessere Auflösung erzielt wird.
Diese Möglichkeiten erinnern stark an den legendären „Tricorder“ aus der TV-Serie „Star Trek“, einem tragbaren multifunktionalen Analyse- und Diagnosegerät. Neben einer kompakten Lichtquelle ist für Messungen an entfernten Objekten und für bildgebende Verfahren aber auch eine hohe optische Leistung erforderlich.
Eine Möglichkeit die Laserleistung zu erhöhen ist eine größere Anzahl von Halbleiterschichten zu verwenden. Je mehr Schichten der Laser hat, umso öfter wechselt das Elektron beim Durchgang den Energiezustand und umso mehr Photonen werden ausgesandt. Die Herstellung eines Lasers mit vielen Schichten ist allerdings schwierig, hier stößt man auf technologische Grenzen. Dem Team rund um Prof. Karl Unterrainer vom Institut für Photonik der TU Wien gelang es nun, zwei separate Quantenkaskadenlaser durch einen sogenannten Bonding-Prozess präzise übereinander zu stapeln.
„Das klappt aber nur bei einem ganz speziellen Design der Quantenkaskaden-Struktur“, erklärt Christoph Deutsch (TU Wien), „mit herkömmlichen Halbleiterlasern wäre das prinzipiell unmöglich.“ Man benötigt dazu symmetrische Laser, durch welche Elektronen in beiden Richtungen gleichermaßen hindurchwandern können. Das Team musste daher zuerst die herstellungsbedingten Asymmetrien der Laser erforschen und kompensieren.
Doppelt ergibt Vierfach – der Rekordlaser
Je mehr Schichten der Laser hat, umso mehr Photonen werden erzeugt. Zusätzlich wird die Effizienz aufgrund verbesserter optischer Eigenschaften erhöht. „Deshalb bringt eine Verdoppelung der Halbleiterschichten sogar eine Vervierfachung der Leistung mit sich“, erklärt Martin Brandstetter (TU Wien). Der bisherige Weltrekord für Terahertz-Quantenkaskadenlaser wurde mit knapp 250 Milliwatt vom renommierten Massachusetts Institute of Technoloy (MIT) erzielt, der TU-Laser erreicht nun ein ganzes Watt. Das ist nicht nur ein weiterer Rekord der TU Wien – mit dem Erreichen der Watt-Grenze wurde auch eine wichtige Hürde für den Einsatz von Terahertz-Quantenkaskadenlasern genommen.
Originalveröffentlichung
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Zuletzt betrachtete Inhalte
5 Jahre Testo Industrial Services AG in der Schweiz
Das Salz in der chemischen Suppe - Ein neuer Weg zu katalytischen Organometallen
Kriminalpuzzle zum Kiefernprachtkäfer - Forscher berechnen Empfindlichkeit eines natürlichen Sensors
Blicke unter die Haut
Neue Form der seltenen Glasknochenkrankheit entdeckt - Einfache Messung im Urin
Start-up erhält 6 Millionen Euro zur Entwicklung eines Corona-Schnelltests - Nested PCR-Test für Ergebnisse in ca. 35 Minuten direkt am Point of Care
Mikroskopie auf einen atomaren Punkt gebracht - Die Quantenpunkt-Kontakt-Mikroskopie bildet Oberflächen mit atomarer Auflösung ab
Analytica bekommt einen Ableger in Südafrika - Messe München kauft Labortechnikmesse Lab Africa
Sepsis: Breitband-PCR Test erhält in-vitro Diagnostik Zulassung - Neuartiger Test ermöglicht schnelle und verlässliche Routinediagnostik
Angriffswerkzeug der Bakterien hochaufgelöst in 3D - Max-Planck-Wissenschaftler entschlüsseln Struktur bakterieller Injektionsnadeln erstmals im atomaren Detail