11.05.2012 - Max-Planck-Institut für Quantenoptik

Billardspiel im Atom

Physiker am Max-Planck-Institut für Quantenoptik verfolgen die Doppelionisation von Argonatomen auf Attosekunden-Zeitskalen

Trifft ein intensiver Laserpuls auf ein Atom, kommt Bewegung in den Mikrokosmos. Nicht selten wird dann ein Elektron aus dem Atom herausgeschleudert und dieses ionisiert. Manchmal passiert aber auch noch mehr: nämlich eine so genannte Doppelionisation. Dann löst das Licht nicht nur ein sondern zwei Elektronen aus dem Atom heraus. Diesen Prozess haben jetzt Physiker des Labors für Attosekundenphysik am Max-Planck-Institut für Quantenoptik in Garching in enger Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Kernphysik (Heidelberg) und einem internationalen Team erstmals mit Attosekunden-Genauigkeit verfolgt (eine Attosekunde ist ein Milliardstel einer Milliardstel Sekunde).

Der Vorgang erinnert an ein Billardspiel, bei dem eine Kugel nach einem Zusammenstoß mit einer weiteren in Bewegung versetzt wird. Ähnlich wie ein solcher Zusammenstoß verläuft eine so genannte nicht-sequenzielle Doppelionisation. Dabei reißt starkes Laserlicht ein Elektron aus einem Atom heraus, beschleunigt es erstmal vom Atomrumpf weg und dann wieder auf den Atomrumpf zu. Bei dem Zusammenstoß überträgt das Elektron einen Teil seiner Bewegungsenergie auf ein zweites Elektron, das dabei in einen angeregten Zustand des Atomrumpfes versetzt und wenig später durch das elektrische Feld des Laserpulses aus dem Atomrumpf herausgelöst wird. Da ein Laserpuls üblicherweise viele optische Zyklen enthält, tragen zur nicht-sequenziellen Doppelionisation viele derartige Rekollisionen und Anregungen bei, was die Interpretation von Experimenten erschwert.

Jetzt ist es einem Team vom Labor für Attosekundenphysik (LAP) am Max-Planck-Institut für Quantenoptik (MPQ) in enger Zusammenarbeit mit Kollegen des Max-Planck-Instituts für Kernphysik (Heidelberg) und internationalen Partnern gelungen, eine solche Doppelionisation auf einen einzelnen Kollisionsprozess zu reduzieren und diesen auf Attosekunden-Zeitskalen zu verfolgen.

Dazu schickten die Wissenschaftler einen nur vier Femtosekunden langen Laserpuls auf Argonatome (eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde). Die Lichtwelle dieses Pulses verfügte über nicht viel mehr als einen Wellenberg und ein Wellental, also eine Schwingung. Durch das elektrische Feld des Lichts wurden die meisten Argonatome einfach ionisiert. Bei jedem tausendsten Atom fand jedoch die nicht-sequenzielle Doppelionisaton statt: Das elektrische Feld des Pulses beschleunigte das erste Elektron. Nach kurzer Zeit jedoch drehte sich das Feld um und beschleunigte das Teilchen zurück in Richtung Atomrumpf bis es schließlich wieder mit diesem kollidierte. Dieser Vorgang dauerte rund 1,8 Femtosekunden. Bei der Rekollision übertrug das Elektron Energie auf den Rumpf und versetzte ein zweites Elektron in einen angeregten Zustand. Rund 400 Attosekunden verblieb das zweite Teilchen dort bis es schließlich, kurz vor dem zweiten Wellenberg des Laserpulses, ebenfalls aus dem Atomrumpf herausgelöst wurde. „Wir waren überrascht, dass das zweite Elektron schon 200 Attosekunden vor dem Maximum des zweiten Wellenbergs den Atomrumpf verließ“, erklärt Boris Bergues, Wissenschaftler im LAP-Team. Bis heute ging man davon aus, dass das Elektron den Atomrumpf erst beim Erreichen der Spitze des Wellenbergs verlässt.

Mit ihren Beobachtungen haben die Garchinger Forscher einen wichtigen Einblick in dynamische Prozesse gewonnen, an denen mehrere Elektronen beteiligt sind. Diese Attosekunden-Dynamik ist vor allem für das Verständnis der Wechselwirkung zwischen Licht und Materie wichtig. Auf Moleküle angewandt könnte die neue Beobachtungstechnik rund um das „Billardspiel“ im Mikrokosmos dazu beitragen, einen tieferen Einblick in das Zusammenspiel von Elektronen bei chemischen Reaktionen zu gewinnen.

  • Boris Bergues et al.; Attosecond Tracing of Correlated Electron-Emission in Non-Sequential Double Ionization, Nature Communications, 8. Mai 2012
Fakten, Hintergründe, Dossiers
  • Max-Planck-Gesellschaft
Mehr über MPI für Quantenoptik
  • News

    Neuartige Blutuntersuchung mittels Infrarotlicht

    Ein Team aus Laserphysikern, Molekularbiologen und Medizinern der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik hat die zeitliche Konstanz der molekularen Zusammensetzung im Blut von gesunden Testpersonen untersucht. Die Ergebnisse dienen als Grundlage, Veränd ... mehr

    Das Protonenrätsel geht in die nächste Runde

    Wissenschaftlern am Max-Planck-Institut für Quantenoptik (MPQ) ist es gelungen, die Quantenelektrodynamik mit bis dahin unerreichter Genauigkeit auf 13 Nachkommastellen zu testen. Die neue Messung des 1S-3S Übergangs im atomaren Wasserstoff ergibt einen Protonenradius fast doppelt so genau ... mehr

    Neuartiges Lichtmikroskop mit einer Auflösung von einigen zehn Pikometern

    Lichtmikroskope ermöglichen es uns, winzige Objekte wie lebende Zellen sehen zu können. Bislang ist es nicht möglich, die viel kleineren Elektronen zwischen den Atomen in Festkörpern zu beobachten. Wissenschaftler aus den Arbeitsgruppen von Professor Eleftherios Goulielmakis vom Institut fü ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    DNA in archäologischen Sedimenten

    Durch die Analyse von in Sedimenten konserviertem Erbgut kann die Anwesenheit von Menschen und Tieren an archäologischen Fundstätten nachgewiesen werden. Nur wenig war bisher darüber bekannt, wie DNA über lange Zeiträume in Sedimenten überdauert. Ein internationales Team von Forschenden des ... mehr

    Coole Mikroskopie: Das Unsichtbare wird sichtbar

    Die Fluoreszenzmikroskopie bietet die einzigartige Möglichkeit, zelluläre Prozesse über vier Größenordnungen hinweg zu beobachten. Ihre Anwendung in lebenden Zellen wird jedoch durch sehr schnelle und unaufhörliche Molekularbewegungen und durch die licht-induzierte Zerstörung der Fluoreszen ... mehr

    Molekulare Waage auf biologischen Membranen: Mass-Sensitive Particle Tracking

    Ein Großteil biologisch relevanter Prozesse findet an Membranen statt. Die Dynamik dieser Prozesse in Echtzeit und ohne Störung des biologischen Systems zu studieren, ist bis heute eine große methodische Herausforderung. Ein Team um Petra Schwille, Direktorin am Max-Planck-Institut für Bioc ... mehr

Mehr über MPI für Kernphysik
  • News

    Masse des Deuterons korrigiert

    Hochpräzise Messungen der Masse des Deuterons, des Kerns von schwerem Wasserstoff, bringen neue Erkenntnisse über die Zuverlässigkeit fundamentaler Größen der Atom- und Kernphysik. Das berichtet eine Kollaboration unter der Leitung des MPI für Kernphysik mit Partnern der Johannes Gutenberg- ... mehr

    Eine Ameise auf einem Elefanten wiegen: Quantensprung auf der Waage

    Ein neuer Zugang zur Quantenwelt: Wenn ein Atom beim Quantensprung eines Elektrons Energie aufnimmt oder abgibt, wird es schwerer oder leichter. Ursache ist Einsteins E = mc². Allerdings ist dieser Effekt bei einem einzelnen Atom ultraklein. Trotzdem gelang es nun einer internationalen Koop ... mehr

    Quantenlogik-Spektroskopie erschließt Potenzial hochgeladener Ionen

    Wissenschaftler der Physikalisch-Technischen Bundesanstalt (PTB) und des Max-Planck-Instituts für Kernphysik (MPIK) haben erstmals optische Messungen mit bislang unerreichter Präzision an hochgeladenen Ionen durchgeführt. Dazu isolierten sie ein einzelnes Ar¹³⁺-Ion aus einem extrem heißen P ... mehr