14.03.2022 - Friedrich-Alexander-Universität Erlangen-Nürnberg

Grüner Wasserstoff leuchtet pink

Forschende entwickeln Sensor, um Wasserstoff sichtbar zu machen

Unsichtbares Wasserstoffgas für das bloße Auge sichtbar machen, um Gefahren durch Brände und Explosionen zu verhindern: Diese Idee haben Wissenschaftlerinnen und Wissenschaftler des Departments Chemie und Pharmazie und des Lehrstuhls für Thermische Verfahrenstechnik der FAU verwirklicht. Das Ergebnis sind sogenannte Suprapartikel, winzig kleine Partikel, die ihre Farbe verändern, sobald sich Wasserstoffgas in ihrer Umgebung befindet.

Mit erneuerbarer Energie hergestellter, sogenannter grüner Wasserstoff soll in Zukunft zum Schlüsselbaustein für eine nachhaltige und klimafreundliche Energiewirtschaft werden. Wasserstoffgas kann man weder riechen noch sehen, an der Luft ist es jedoch leicht entzündlich und hochexplosiv. Historische Ereignisse wie die Explosion des Zeppelins „Hindenburg“ und kürzlich auch die Explosion einer Wasserstofftankstelle in Norwegen zeigen, wie wichtig Sicherheitsvorkehrungen sind, um eine nachhaltige und sichere Wasserstoffwirtschaft aufzubauen.

Um die Sicherheit im Umgang mit Wasserstoff zu erhöhen, haben Forscherinnen und Forscher der FAU, ausgehend von einem Konzept, das am Fraunhofer Institut für Silicatforschung (ISC) in Würzburg entwickelt wurde, die grundsätzlichen Funktionsmechanismen für einen neuartigen Wasserstoffsensor erforscht. Beteiligt waren die Arbeitsgruppen von Prof. Dr. Karl Mandel, Professur für Anorganische Chemie, Prof. Dr. Jörg Libuda und Dr. Tanja Bauer, Lehrstuhl für Katalytische Grenzflächenforschung, Prof. Dr. Dirk Zahn, Professur für Theoretische Chemie, Prof. Dr. Matthias Thommes, Lehrstuhl für Thermische Verfahrenstechnik, und Prof. Dr. Andreas Görling, Lehrstuhl für Theoretische Chemie.

Wasserstoffsensoren können bereits geringe Konzentrationen des Gases, zum Beispiel bei einem Leck in der Leitung, erkennen. Der neuartige Wasserstoffsensor der FAU-Forscherinnen und -Forschern besteht aus winzigen Partikeln, sogenannten Suprapartikeln, und macht ohne Strom oder komplexe Messgeräte Wasserstoffgas für das bloße Auge sichtbar. Die entwickelten Suprapartikel sind zwischen einem und zehn Mikrometern, ein Mikrometer ist ein Tausendstel Millimeter, groß und bestehen unter anderem aus dem violetten Indikatorfarbstoff Resazurin. In Kontakt mit Wasserstoff reagieren die Farbstoffmoleküle und verfärben sich für das Auge sichtbar in zwei Stufen. Verfärbt sich der Sensor pink, ist einmalig Wasserstoff ausgetreten. Tritt gerade noch Wasserstoff aus, ist der Sensor also in dem Moment viel Wasserstoff ausgesetzt, wird er farblos. Lecks sind auf Grund der sofortigen Reaktion so in Echtzeit sicht- und auffindbar. Ein weiterer Vorteil des neuartigen Wasserstoffsensors ist seine geringe Größe, so kann er in vielen Bereichen, zum Beispiel für die Beschichtung von Leitungen eingesetzt werden.

„Das gewonnene mechanistische Verständnis über das neue Partikelsystem wird es uns ermöglichen, die Superpartikel weiter zu optimieren, um ihr volles Potenzial auszuschöpfen, reale Anwendung zu finden und damit einen Beitrag zu einer sicheren Wasserstoffwirtschaft zu leisten“, erklären die Erstautoren der Publikation Simon Schötz, Wissenschaftlicher Mitarbeiter am ECRC, und Jakob Reichstein, Wissenschaftlicher Mitarbeiter bei der Mandel group.

  • Jakob Reichstein et al.; "Supraparticles for Bare-Eye H2 Indication and Monitoring: Design, Working Principle, and Molecular Mobility"; Advanced Functional Materials; 2022

Friedrich-Alexander-Universität Erlangen-Nürnberg

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Wasserstoff
  • grüner Wasserstoff
  • Wasserstoffwirtschaft
  • Gassensoren
  • Leckageerkennung
  • Suprapartikel
Mehr über Friedrich-Alexander-Universität Erlangen-Nürnberg
  • News

    Rekordauflösung in der Röntgenmikroskopie

    Forschern der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), des Schweizer Paul-Scherrer-Instituts und weiterer Einrichtungen aus Paris, Hamburg und Basel ist ein Rekord in der Röntgenmikroskopie gelungen: Mit verbesserten Beugungslinsen und exakterer Positionierung der Proben err ... mehr

    Carbin – eine außergewöhnliche Form des Kohlenstoffs

    Welche photophysikalischen Eigenschaften hat Carbin? Das haben Wissenschaftler der FAU, der kanadischen University of Alberta und der schweizerischen Ecole Polytechnique Fédérale de Lausanne gemeinsam untersucht – und ein tiefergreifendes Verständnis für diese außergewöhnliche Form des Kohl ... mehr

    Das Coronaskop

    Eine Art Videoüberwachung könnte helfen, dem Coronavirus beizukommen: Forscher des Max-Planck-Instituts für die Physik des Lichts und der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) möchten live verfolgen, wie Zellen durch Sars-CoV-2 infiziert werden. Zu diesem Zweck installiere ... mehr