02.12.2021 - Technische Universität Wien

Detektivarbeit an der Brennstoffzelle

Forscher untersuchen neue Materialien, mit denen sich die Betriebstemperatur von Brennstoffzellen herabsetzen lässt: Dazu wenden sie eine innovative Methode an

Festoxidbrennstoffzellen bestehen aus drei wichtigen Teilen: einer Anode, einer Kathode und einem Elektrolyten. Während Sauerstoff an der Kathode in die Festoxidbrennstoffzelle eingebaut wird, wird dieser im Elektrolyt zur Anode transportiert, wo der Sauerstoff mit Wasserstoff zu Wasser reagiert. Die Brennstoffzelle wandelt die dabei freiwerdende Energie in elektrischen Strom um. Daher werden Brennstoffzellen zunehmend zur Stromerzeugung genutzt und finden Einsatz in der stationären Energieversorgung sowie der Automobilindustrie.

Um die Betriebstemperatur von Festoxidbrennstoffzellen von derzeit etwa 800 °C zu senken, forschen Wissenschaftler der TU Wien an alternativen Materialien, die sich als Kathode eignen. Die Ergebnisse ihrer Materialanalyse veröffentlichten Markus Kubicek und sein Team jüngst in der Fachzeitschrift „Journal of Materials Chemistry A“.

Betriebstemperatur senken

Festoxidbrennstoffzellen werden bereits seit den 1980er Jahren gebaut. Nun versuchen Forschende neue Brennstoffzellen zu entwickeln, die noch langzeitstabiler und kostengünstiger herzustellen sind. Dazu ist es notwendig, die Betriebstemperatur auf etwa 450 bis 600 Grad Celsius zu senken. Für den Betrieb der Festoxidbrennstoffzelle bei niedrigeren Temperaturen stellt vor allem der Sauerstoffeinbau an der Kathode einen Flaschenhals dar, denn die chemische Reaktion läuft nun langsamer ab. Daher sind Forschende weltweit auf der Suche nach Wegen, um neue Elektrodenmaterialien zu entwickeln, die auch bei niedrigeren Temperaturen Sauerstoff ausreichend schnell einbauen können.

Einbau von Sauerstoffionen

Wissenschaftler des Forschungsbereichs „Technische Elektrochemie“ arbeiten bereits seit Jahren an sogenannten gemischtleitenden Materialien (engl. MIECs). Oxide dieser Materialklasse sind besonders gut für Brennstoffzellenkathoden geeignet, da sie bei höheren Temperaturen sowohl Sauerstoffionen als auch Elektronen leiten können. Dies funktioniert vor allem über Defekte, also über minimale Abweichungen vom idealen Kristallgitter, die absichtlich in das Material eingebracht werden.

„Die wichtigsten Defekte im Inneren dieser Materialien sind Sauerstoffleerstellen sowie Elektronen und Löcher. Um diese Materialien zielgerichtet optimieren zu können, ist ein besseres Verständnis der Rolle dieser Defekte für die Sauerstoffeinbaureaktion von höchster Bedeutung“, erklärt Markus Kubicek, Leiter des FWF-Projekts „In-Situ Charakterisierung oxidischer Dünnfilme beim Wachstum“. Genau das ist den Forschenden jetzt gelungen.

Weltweit einzigartige Messmethode

Um die Geschwindigkeit des Sauerstoffeinbaues zu messen, bedienen sich die Forschenden weltweit einzigartiger „in situ PLD“-Messungen. Die Elektrodenmaterialen werden in einer Vakuumkammer mit einem Laser hergestellt und direkt mittels Impedanzspektroskopie untersucht. „Da bereits kleinste Verunreinigungen zu einer starken Verfälschung der Messergebnisse führen können, brauchten wir eine Messmethode, mit der wir tatsächlich saubere Elektrodenoberflächen untersuchen können. Das ist uns hier erstmals gelungen“, erklärt Christoph Riedl aus der Forschungsgruppe für Festkörperionik. „Nur durch unsere hier entwickelte in-situ-Methode konnten wir theoretische Simulation und reale Messergebnisse perfekt miteinander vereinen“, ergänzt er.

Verschiedene Materialen, gleicher Einbaumechanismus

Die Forschenden untersuchten mit ihrer Messmethode die Sauerstoffaustauschreaktion an der Oberfläche von fünf vielversprechenden Materialien. „Ein Highlight unserer Messungen ist, dass wir erstmals beobachten konnten, dass der Sauerstoffaustausch auf sehr unterschiedlichen Materialien dem gleichen Mechanismus zu folgen scheint“, schildert Matthäus Siebenhofer. „Ein entscheidender Faktor ist dabei die Verfügbarkeit von Sauerstoffleerstellen an der Oberfläche.“

Jürgen Fleig, Leiter der Arbeitsgruppe „Festkörperionik“, resümiert: „In dieser Studie konnten wir verschiedene Forschungsergebnisse und experimentelle Entwicklungen der letzten Jahre zu einem großen Ganzen zusammenfügen und so die wichtigste Reaktion im Bereich der Festoxidbrennstoffzellen deutlich besser beschreiben und verstehen.“

Technische Universität Wien

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Brennstoffzellen
  • Festoxid-Brennstoffzellen
  • Materialanalytik
  • Impedanzspektroskopie
Mehr über TU Wien
  • News

    Zellen mit dem Laser steuern

    An der TU Wien wurde eine Methode entwickelt, um einzelne Zellen mit Laserpräzision an die richtige Stelle zu leiten. Es ist eines der größten Probleme beim Herstellen von künstlichem Gewebe: Wie schafft man es, die einzelnen Zellen an den richtigen Ort zu dirigieren, etwa wenn ein Blutgefä ... mehr

    Das Platin-Rätsel

    Was passiert, wenn eine Katze auf eine Sonnenblume klettert? Die Sonnenblume ist nicht stabil, sie wird sich rasch nach unten verbiegen, und die Katze ist wieder auf dem Boden. Wenn die Katze aber nur einen raschen Zwischenschritt benötigt, um von dort aus einen Vogel zu erwischen, dann kan ... mehr

    Terahertzstrahlung kompakter und einfacher als je zuvor

    Terahertzstrahlung hat eine Wellenlänge von typischerweise etwas unter einem Millimeter – und das ist ein technisch schwieriger Bereich. Elektromagnetische Wellen mit größerer Wellenlänge kann man mit gewöhnlichen elektronischen Bauteilen (wie Transistoren) und Antennen erzeugen. Kleinere W ... mehr