06.01.2021 - Max-Planck-Institut für Struktur und Dynamik der Materie

Gold-Nanopartikel für hochaufgelöste Biomoleküle

3D-Bilder mit bislang unerreichter Auflösung

Ein internationales Forschungsteam unter der Leitung von Kartik Ayyer am MPSD hat 3D-Bilder von Gold-Nanopartikeln in ultrapräzisem Detail generiert. Die Ergebnisse sind ein wichtiger Schritt in der Suche nach hochauflösenden Abbildungsmethoden für Makromoleküle. Die Studie wurde am Single Particles, Clusters, and Biomolecules & Serial Femtosecond Crystallography-Instrument (SPB/SFX) des European XFEL durchgeführt und sind nun in der Zeitschrift Optica erschienen.

Makromoleküle wie Kohlenhydrate, Lipide, Proteine und Nukleinsäuren bevölkern unsere Zellen und sind dort an lebenswichtigen Abläufen beteiligt. Um die genauen Funktionen dieser Makromoleküle zu verstehen, muss ihre Struktur bis ins kleinste Detail erforscht werden. Das Forschungsteam am European XFEL und dem MPSD verwendete Gold-Nanopartikel als Ersatz für Biomoleküle, da sie weitaus mehr Röntgenstrahlen streuen. Anhand dieser Goldpartikel maß das Team 10 Millionen Beugungsmuster und erzeugte daraus 3D-Bilder mit bislang unerreichter Auflösung. Goldpartikel liefern eine große Menge an Daten, die für die Feinabstimmung von Methoden zur Erforschung von Biomolekülen eingesetzt werden können.

"Zu den Bildgebungstechniken für Biomoleküle zählt die Röntgenkristallographie, aber die Kristallisation von Biomolekülen ist kein einfacher Prozess. Dazu gibt es noch die Kryo-Elektronenmikroskopie, die mit gefrorenen Molekülen arbeitet", sagt Ayyer. Nun eröffnen moderne Freie-Elektronen-Röntgenlaser neue Wege zur Einzelpartikel-Bildgebung (SPI), einer Technik, die das Potenzial hat, hochauflösende Bilder von Biomolekülen bei Raumtemperatur und ohne Kristallisation zu liefern. So können Biomoleküle näher an ihrem nativen Zustand untersucht werden, um bessere Einblicke in ihre Struktur und Funktion in unserem Körper zu erlangen.

Auch im SPI-Bereich verblieben jedoch zwei Hürden: Das Sammeln von genügend qualitativ hochwertigen Beugungsmustern und die richtige Klassifizierung der strukturellen Variabilität der Biomoleküle. Die Arbeit des Teams zeigt nun, dass diese beiden Barrieren überwunden werden können, sagt Kartik Ayyer: "Bisherige SPI-Experimente lieferten selbst im besten Fall nur etwa zehntausend Beugungsmuster. Um für die Strukturbiologie relevante Auflösungen zu erhalten, benötigen die Forscher jedoch 10- bis 100-mal mehr Beugungsmuster", so Ayyer. „Aufgrund der einzigartigen Fähigkeiten der European XFEL-Anlage, nämlich der hohen Anzahl von Röntgenlaserpulsen pro Sekunde und der hohen Pulsenergie konnte das Team in einem einzigen fünftägigen Experiment 10 Millionen Beugungsmuster sammeln. Diese Datenmenge ist beispiellos und wir glauben, dass unser Experiment eine Vorlage für die Zukunft dieses Forschungsfeldes darstellt.".

Für das Problem der strukturellen Variabilität von Biomolekülen entwickelte das Team einen speziellen Algorithmus. Die Beugungsmuster werden von einem zweidimensionalen Detektor gesammelt - ähnlich wie eine schnelle Röntgenkamera. Ein Algorithmus sortiert daraufhin die Daten und ermöglicht es den Forschern, das Bild des Biomoleküls zu rekonstruieren. "Wir nutzten die Fähigkeiten des Adaptive Gain Integrating Pixel Detector (AGIPD), der es uns ermöglichte, Muster mit dieser hohen Rate zu erfassen. Anschließend sammelten und analysierten wir die Daten mit maßgeschneiderten Algorithmen, um Bilder mit bislang unerreichter Auflösung zu erhalten", sagt Ayyer.

"Diese Studie profitierte von den einzigartigen Eigenschaften unserer Anlage, des Fast-Framing-Detektors und der effektiven Probenzufuhr", sagt Adrian Mancuso, leitender Wissenschaftler der SPB/SFX-Gruppe. "Sie zeigt, dass der European XFEL in Zukunft gut aufgestellt ist, um die Grenzen des 'Sehens' für nicht kristallisierte Biomoleküle bei Raumtemperatur zu erkunden."

Max-Planck-Institut für Struktur und Dynamik der Materie

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Biomoleküle
  • Gold-Nanopartikel
  • Makromoleküle
  • Bildgebung
  • 3D-Bildgebung
  • Freie-Elektronen-Laser
Mehr über Max-Planck-Institut für Struktur und Dynamik der Materie
  • News

    Molekülbewegungen in Echtzeit

    Die Effizienz von Solarzellen lässt sich mit einem bestimmten physikalischen Effekt deutlich steigern. Ein Forschungsteam hat jetzt erstmals detailliert beobachtet, wie Molekülbewegungen diesen Effekt beeinflussen. Forscher des Fritz-Haber-Instituts in Berlin (FHI), des Max-Planck-Instituts ... mehr

    Forschungsteam stoppt zeitlichen Abstand von Elektronen innerhalb eines Atoms

    Seit mehr als einem Jahrzehnt liefern Röntgen-Freie-Elektronen-Laser (XFELs) schon intensive, ultrakurze Lichtpulse im harten Röntgenbereich. Einige der vielversprechendsten Anwendungen von XFELs liegen in der Biologie, wo Materialien auf der atomaren Skala abgebildet werden können, bevor d ... mehr

    Atomar scharfes Licht

    Wissenschaftlern aus Regensburg und Hamburg ist es erstmals gelungen, die exakte Form von Lichtwellen mit atomarer Präzision zu messen. Dieser Fortschritt erlaubt in Zukunft das Maßschneidern von Lichtimpulsen und damit die volle Kontrolle über Prozesse im Nanokosmos, die als Grundlage von ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    MaxDIA – Proteomik auf dem nächsten Level

    Die Proteomik produziert enorme Datenmengen, deren Analyse und Interpretation sehr komplex sein kann. Die kostenlose Software-Plattform MaxQuant hat sich in den letzten 13 Jahren als äußerst hilfreich für die Datenanalyse in der Shotgun-Proteomik erwiesen. Nun stellen Jürgen Cox, Gruppenlei ... mehr

    Wie Ethan-fressende Mikroben ihre Lieblingsspeise aufnehmen

    An heißen Quellen in der Tiefsee leben Mikroorganismen, die sich von Ethan ernähren. Sie wurden kürzlich von Wissenschaftlern des Max-Planck-Instituts für Marine Mikrobiologie entdeckt. Jetzt haben die Forschenden aus Bremen zusätzlich einen wichtigen Baustein in der mikrobiellen Verwertung ... mehr

    Wie eine Corona-Infektion Blutzellen langfristig verändert

    Mithilfe der Echtzeit-Verformungszytometrie konnten Forscher des Max-Planck-Zentrums für Physik und Medizin in Erlangen erstmals zeigen: Durch eine Covid-19-Erkrankung verändern sich Größe und Steifigkeit roter und weißer Blutkörperchen deutlich – zum Teil über Monate hinweg. Diese Ergebnis ... mehr