01.03.2010 - Ludwig-Maximilians-Universität München (LMU)

Eine heisse Spur zu neuen Medikamenten: Medizinische Wirkstoffe effizient identifizieren

Die Suche nach neuen Medikamenten ist zeitaufwändig und teuer. Oft müssen hunderte von Substanzen auf ihre Bindungs-Affinität zu krankheitsrelevanten Molekülen getestet werden, um einen Wirkstoff zu identifizieren. Biophysiker aus der Gruppe von Professor Dieter Braun, Ludwig-Maximilians-Universität (LMU) München und Excellenzcluster „Nanosystems Initiative Munich“ (NIM), sowie von der LMU Spin-Off-Firma NanoTemper haben nun mit der „Microscale Thermophoresis“ ein weltweit einmaliges Verfahren entwickelt, das potentielle Wirkstoffe deutlich schneller und zuverlässiger findet. Die Methode beruht auf dem Phänomen, dass Moleküle in Flüssigkeit entlang eines Temperaturgefälles wandern, meist von warm zu kalt. Bindet das Molekül an eine andere Substanz, ändert sich seine Bewegung. So können nun erstmals unter natürlichen Bedingungen etwa krankheitsrelevante Moleküle im Blut getestet werden –. Bindet der Wirkstoff, so lässt sich dies über die molekulare Bewegung nachweisen. „Dies ist der erste Schritt hin zu einem neuen Medikament“, so Braun. „Das neue Verfahren kann aber auch in der medizinischen Diagnostik, der Lebensmittelüberwachung und im Umweltschutz eingesetzt werden.“

Die herkömmlichen Testverfahren zur Identifizierung potentieller Wirkstoffe funktionieren nur in künstlichen Pufferlösungen und erlauben so fast keine Aussage über die Bindungs-Affinität der Substanzen im Blut. Anders das neue Verfahren: Hiermit können derartige Analysen nun erstmals unter aussagekräftigen natürlichen Bedingungen erfolgen. Dazu wird Blut mit dem potentiellen Wirkstoff gemischt und ein winziger Tropfen der Flüssigkeit mit einer Glaskapillare aufgezogen. Der feine Strahl eines Infrarot-Lasers erwärmt die Blutprobe anschließend punktuell in der Mitte des Röhrchens, so dass nach außen abfallend ein Temperaturgradient entsteht. Weil die krankheitsrelevanten Moleküle mit einer fluoreszierenden Markierung versehen sind, lässt sich ihre Bewegung verfolgen.

Unmittelbar nach dem Erwärmen der Probe lässt sich anhand der Fluoreszenzänderung erkennen, ob sich die Moleküle in der Blutprobe mit Wirkstoff anders bewegen als in einem Kontrollversuch ohne Wirkstoff. Ist dies der Fall, dann hat die Testsubstanz an das Zielmolekül gebunden. Der Nachweis dieser Bindung ist der erste Schritt zu einem neuen Medikament. „Unsere Methode bringt aber nicht nur die Wirkstoffforschung voran“, sagt Braun. „Sie kann genauso in der medizinischen Diagnostik, der Lebensmittelüberwachung und im Umweltschutz eingesetzt werden. Denkbar ist zum einen der direkte Nachweis von Immunerkrankungen und Infektionen aber auch der schnelle Nachweis von Antibiotika in Milch oder aber von Giftstoffen im Wasser.“

Originalveröffentlichung: Philipp Baaske, Christoph J. Wienken, Philipp Reineck, Stefan Duhr und Dieter Braun; „Quantifizierung der Puffer-Abhängigkeit von Aptamer-Bindungsreaktionen mit optischer Thermophorese”; Angewandte Chemie 2010.

Ludwig-Maximilians-Universität München (LMU)

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Wirkstoffe
  • Braun
  • Blut
  • LMU
  • Wasser
  • Umweltschutz
  • Infektionen
  • Diagnostik
  • Chemie
  • Antibiotika
Mehr über LMU
  • News

    Neuartige Blutuntersuchung mittels Infrarotlicht

    Ein Team aus Laserphysikern, Molekularbiologen und Medizinern der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik hat die zeitliche Konstanz der molekularen Zusammensetzung im Blut von gesunden Testpersonen untersucht. Die Ergebnisse dienen als Grundlage, Veränd ... mehr

    Per Smartphone einzelne Moleküle detektieren und Krankheiten erkennen

    Um Krankheiten zu erkennen oder um deren Verlauf zu beurteilen, spielen Biomarker eine zentrale Rolle. Dazu zählen beispielsweise Gene, Proteine, Hormone, Lipide oder andere Moleküle. Sie kommen im Blut, im Liquor, im Urin oder in unterschiedlichen Gewebetypen vor, haben aber eine Gemeinsam ... mehr

    Fluoreszenzmikroskopie mit höchster Auflösung

    Erst vor wenigen Jahren wurde eine fundamental erscheinende Auflösungsgrenze der optischen Mikroskopie gesprengt, was 2014 zur Verleihung des Nobelpreises für Chemie führte. Seither hat es auf dem Gebiet der superauflösenden Mikroskopie einen weiteren Quantensprung gegeben, der die Auflösun ... mehr

Mehr über NanoTemper Technologies