10-Jun-2016 - University of Melbourne

World-first pinpointing of atoms at work for quantum computers

Scientists can now identify the exact location of a single atom in a silicon crystal, a discovery that is key for greater accuracy in tomorrow's silicon based quantum computers.

It's now possible to track and see individual phosphorus atoms in a silicon crystal allowing confirmation of quantum computing capability, but which also has use in nano detection devices.

Quantum computing has the potential for enormous processing power in the future. Current laptops have transistors that use a binary code, an on-or-off state (bits). But tomorrow's quantum computers will use quantum bits 'qubits', which have multiple states.

Professor Lloyd Hollenberg at the University of Melbourne and Deputy Director of the Centre for Quantum Computation and Communication Technology led an international investigation on the fundamental building blocks of silicon based solid-state quantum processors.

His collaborators Professor Sven Rogge and Centre Director Professor Michelle Simmons at the University of New South Wales, obtained atomic-resolution images from a scanning tunneling microscope (STM) allowing the team to precisely pinpoint the location of atoms in the silicon crystal lattice.

'The atomic microscope images are remarkable and sensitive enough to show the tendrils of an electron wave function protruding from the silicon surface. The theory is now visible, this is a world first,' said Professor Hollenberg.

Lead author of the paper published in Nature Nanotechnology, Dr Muhammad Usman from the University of Melbourne said: 'The images showed a dazzling array of symmetries that seemed to defy explanation, but when the quantum state environment is taken into account, suddenly the images made perfect sense.'

The teams from University of Melbourne, UNSW and Purdue University USA are part of the world-leading research at the Centre focused on the demonstration of the fundamental building blocks of a silicon-based solid-state quantum processor.

In 2015, the Centre for Quantum Computation and Communication Technology was included in the Prime Minister's Innovation and Science Agenda -- a significant undertaking by the Federal Government also supported by a combined $20m investment commitment from Telstra and the Commonwealth Bank.

Facts, background information, dossiers
  • silicon
  • quantum computing
  • transistors
  • phosphorus
  • quantum bits
  • doping
  • University of Melbourne
  • scanning tunneling…
More about University of Melbourne
  • News

    Sensing Protein Wellbeing

    The folding state of the proteins in live cells often reflect the cell’s general health. Australian scientists have developed a molecular probe that senses the state of the proteome—the entire set of the proteins—by measuring the polarity of the protein environment. The fluorescence signal ... more

    Scientists join forces to reveal the mass and shape of single molecules

    A microscopic tool, more than 1000 times thinner than the width of a single human hair, uses vibrations to simultaneously reveal the mass and the shape of a single molecule - a feat which has not been possible until now.The work was led by Professor John Sader at the University of Melbourne ... more

    Breast cancer risk gene discovery fast tracked by new technology

    An international team of researchers led by the University of Melbourne has used new technology to fast track the discovery of a breast cancer risk gene and could assist in the discovery of other cancer genes.Professor Melissa Southey of the Genetic Epidemiology Laboratory, Department of Pa ... more