05-Dec-2013 - University of Toronto

Therapeutic screening for Alzheimer’s disease

Scientists in Canada and the United States have developed a chip sensor for monitoring how drug candidates alter amyloid-β peptide aggregation that they hope could be used to find new treatments for Alzheimer’s disease.

Research into Alzheimer’s disease has shown that the self-aggregation of the amyloid-β (Aβ) peptide plays a vital role in the development of the disease. A number of techniques have been investigated to study Aβ aggregation, including acoustic wave sensors, electrochemistry and atomic force microscopy.

Now, for the first time, researchers have used an LED-interferometric reflectance imaging sensor (LED-IRIS) to look at the interaction of Aβ peptide with small drug candidates. The sensor uses a Si/SiO2 layered substrate as the sensing surface, which is spotted with Aβ peptide ‘seeds’ using a desktop spotting unit. The sensing surface is incubated with Aβ oligomer solution and drug candidates, which results in differing areas of Aβ peptide aggregation. The sensor monitors this aggregation by detecting optical path length changes. The scientists used green tea polyphenol epigallocatechin-3-gallate and zinc, which are already known to inhibit and promote Aβ peptide aggregation respectively, as model modulators to test the system and show it works.

Kagan Kerman at the University of Toronto at Scarborough, who led the research, said: “We have successfully demonstrated a novel method for high throughput screening of small molecules modulating Aβ growth and it provides a promising platform to facilitate therapeutics discovery for Alzheimer’s disease.”

Facts, background information, dossiers
  • zinc
  • Alzheimer's disease
  • University of Toronto
More about University of Toronto
  • News

    Nature-inspired coatings could power tiny chemistry labs for medical testing and more

    A newly developed coating that allows for certain liquids to move across surfaces without fluid loss could usher in new advances in a range of fields, including medical testing. This new coating — created in the DREAM (Durable Repellent Engineered Advanced Materials) Laboratory, led by Univ ... more

    New more powerful genome editing method

    Toronto scientists can now edit multiple sites in the genome at the same time to learn how different DNA stretches co-operate in health and disease. CRISPR-based DNA editing has revolutionized the study of the human genome by allowing precise deletion of any human gene to glean insights int ... more

    'Breathing' enzymes in fast motion

    Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have piece ... more

More about Royal Society of Chemistry
  • News

    Moving the MRI goalposts

    Scientists in the UK have developed a new class of MRI (magnetic resonance imaging) agents that promise to deliver clearer images more quickly. Chemical shifts from proton NMR normally fall between 0-12ppm, but water and fat resonate at 4.7 and 1.3ppm respectively, causing noise that can ov ... more

    High-throughput drug screening in 3D

    Scientists in China have developed a simple microchip that enables quick and inexpensive high-throughput screening of potential drug candidates in 3D cell cultures. Scientists often use cell-based high-throughput screening in the first stage of drug design as a technique to quickly identify ... more

    Detecting bacteria on paper

    Scientists in Canada have developed a low-cost, portable, paper-based device for detecting antibiotic-resistant bacteria that could be used in the field in remote areas to characterise infectious diseases and assess food and water quality. The scientists used a paper support to hold wax-pat ... more