25-Jun-2013 - Forschungszentrum Jülich GmbH

Brain mages of previously unattainable quality

A new three-dimensional model of the brain now provides in-depth insights into the human control centre. It allows us to see and understand the complicated structure of the brain on a microscopic level in all three spatial dimensions for the first time. This is made possible using images with a resolution of 20 micrometres – the size of a neuron, or less than half the diameter of a human hair. Jülich researchers headed by neuroscientist Prof. Dr. Katrin Amunts and their colleagues from Montreal (Canada) have worked on the freely accessible model for five years.

"BigBrain helps us to generate new knowledge on the healthy and also the diseased brain," says Katrin Amunts, director at the Institute of Neuroscience and Medicine (INM-1) and the C. and O. Vogt Institute of Brain Research at Heinrich Heine University Düsseldorf. For example: "As a consequence of its evolution, the human cerebral cortex is very heavily folded," says the neuroscientist. She explains that this is the reason why, in some areas, the thickness of the cerebral cortex can only be determined very imprecisely using imaging techniques such as magnetic resonance imaging. However, the thickness of the cortex changes in the course of a lifetime and is also affected by neurodegenerative processes, such as those associated with Alzheimer’s disease. "With the help of our high-resolution brain model, we can now gain a new understanding of the normal structure of different functional areas of the brain, such as the motor cortex or a region that is important for learning and memory, and we can also measure numerous structural properties," explains Katrin Amunts. This will contribute to the precise identification and evaluation of changes in the brains of patients.

Information from thousands of tissue samples

The three-dimensional virtual brain is based on information from more than 7,400 tissue sections, each of them a mere 20 micrometres thick, that were obtained from a human brain. "We started off in Düsseldorf more than five years ago," says co-initiator Prof. Karl Zilles, now a senior professor in JARA-BRAIN, the brain research cooperation between Forschungszentrum Jülich and RWTH Aachen University. Each individual tissue section was scanned at Forschungszentrum Jülich and then reconstructed in three dimensions with supercomputers. "It’s an extremely difficult and complex task to work with these ultrathin, fragile tissue samples," says Katrin Amunts. Cutting the extremely thin sections can cause tears or folds that have to be ‘repaired’ in the digitized versions by means of modern image processing tools, explains the researcher. In order to process the huge data sets produced, reconstruct them in three dimensions, and evaluate them, the scientists needed powerful supercomputers in Canada and at Jülich.

Human Brain Project benefits from BigBrain

The findings obtained from BigBrain will also be used in the European large-scale Human Brain Project (HBP), which includes Jülich experts specializing in neuroscience and information technology. Together with other researchers from more than 80 scientific institutions in 23 countries, they plan to simulate the entire human brain, from the molecular level to the interaction of entire brain regions, on a supercomputer of the future within the next ten years. In addition to their neuroscientific findings, the Jülich scientists will also contribute to HBP with their innovative software tools. With these tools, data from other brain models can be integrated into the freely accessible software tool BigBrain and be made available to the scientific community.

 

Facts, background information, dossiers
  • supercomputers
  • tissue sections
  • RWTH
  • brain
More about Forschungszentrum Jülich
  • News

    Ultrafast Electron Dynamics in Space and Time

    In textbooks and explanatory videos, they are often depicted as colourful balloons or clouds: electron orbitals provide information on the whereabouts of electrons in molecules, a bit like fuzzy snapshots. In order to understand the exchange of electrons in chemical reactions, it is not onl ... more

    Talent Scout in the Cell Factory

    They’re small, but mighty: microorganisms. The industry known as “white biotechnology” takes advantage of their potential in a variety of ways, for example to produce chemicals, medicines, or dietary supplements. The little powerhouses’ work can be found in a whole series of products, the n ... more

    Genetic key to "healthy" tea

    Tea (Camellia sinensis) is one of the world's most popular drinks with a wide range of flavours and health benefits. Researchers from Huazhong Agricultural University of Wuhan (China), Forschungszentrum Jülich, Heinrich Heine University Düsseldorf and the Max Planck Institute of Molecular P ... more

More about Universität Düsseldorf
  • News

    Tiny sensors for major advances

    An international research team involving the working group of biophysicist Dr. Manuel Etzkorn from Heinrich Heine University Düsseldorf (HHU) has developed an approach for using NMR spectrometry to analyse important molecules that have not been accessible before now. In the journal Angewand ... more

    64 human genomes as new reference for global genetic diversity

    Exactly 20 years after the successful completion of the "Human Genome Project", an international group of researchers, the Human Genome Structural Variation Consortium (HGSVC), has now sequenced 64 human genomes at high resolution. This reference data includes individuals from around the wo ... more

    Unlocking the secrets of plant genomes in high resolution

    Resolving genomes, particularly plant genomes, is a very complex and error-prone task. This is because there are several copies of all of the chromosomes and they are very alike. A team of bioinformatics researchers from Heinrich Heine University Düsseldorf (HHU) has now developed a softwar ... more

More about RWTH
  • News

    Promega and BASF develop alternative method on identifying allergenic substances

    Promega and BASF have jointly developed an alternative method to animal studies that can reliably detect the allergenic potential of substances. Using a newly developed cell line, the reaction of skin cells to allergenic substances can now be demonstrated in the test tube. Allergic skin rea ... more

    PICO and SALVE: Understanding the subatomic world better

    Two new high-resolution transmission electron microscopes, co-financed by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), are set to open up new opportunities for research in physics and materials science. The new research microscopes at RWTH Aachen University and the ... more

    Portable High-Resolution NMR Sensor Unveiled at Berkeley

    A portable device makes it possible for the first time ever to take high-resolution NMR spectroscopy out of the laboratory and into the field for use on samples of any size. This portable NMR sensor was developed by a collaboration of researchers with the U.S. Department of Energy's Lawrenc ... more