30-Nov-2022 - Ludwig-Maximilians-Universität München (LMU)

Sinonasal cancer: AI facilitates breakthrough in diagnostics

Researchers have developed a method for classifying difficult-to-diagnose nasal cavity tumors

Although tumors in the nasal cavity and the paranasal sinus are confined to a small space, they encompass a very broad spectrum with many tumor types. As they often do not exhibit any specific pattern or appearance, they are difficult to diagnose. This applies especially to so-called sinonasal undifferentiated carcinomas (SNUCs).

Now a team led by Dr. Philipp Jurmeister and Prof. Frederick Klauschen from the Institute of Pathology at LMU and Prof. David Capper from Charité University Hospital as well as the German Cancer Consortium (DKTK) ), partner sites Munich and Berlin, has achieved a decisive improvement in diagnostics. The team developed an AI tool that reliably distinguishes tumors on the basis of chemical DNA modifications and assigns the SNUCs, which the methods available before now have been unable to distinguish, to four clearly distinct groups. This breakthrough could open up new opportunities for targeted therapies.

Tumor-specific DNA modifications

Chemical modifications in DNA play a vital role in the regulation of gene activity. This includes DNA methylation, whereby an extra methyl group is added to the DNA building blocks. In earlier studies, the scientists had already demonstrated that the methylation pattern of the genome is specific for different tumor types, because it can be traced back to the tumor’s cell of origin.

“On this basis, we’ve now recorded the DNA methylation patterns of almost 400 tumors in the nasal cavity and paranasal sinus,” says Capper. Thanks to an extensive international collaboration, the researchers managed to compile such a large number of samples even though these tumors are rare and comprise only about four percent of all malignant tumors in the nose and throat area.

Ludwig-Maximilians-Universität München (LMU)

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • diagnostics
  • cancer diagnostics
  • cancer
  • artificial intelligence
  • DNA modifications
  • DNA methylation
  • sinonasal cancer
More about LMU
  • News

    Light-driven molecular swing

    When light impinges on molecules, it is absorbed and re-emitted. Advances in ultrafast laser technology have steadily improved the level of detail in studies of such light-matter interactions. FRS, a laser spectroscopy method in which the electric field of laser pulses repeating millions of ... more

    Comparison of two nano rulers

    In the Middle Ages, every city had its own system of measurement. Even today, you can sometimes find iron rods in marketplaces that determined the length measurement valid for the city at that time. In science, however, there is no room for such uncertainties, and no matter what method you ... more

    Most powerful dual-comb spectrometer developed

    Scientists from Hamburg and Munich developed the world's most powerful dual-comb spectrometer that paves the way for many applications in atmospheric science and biomedical diagnostics, such as early cancer detection. The work has recently been published in Nature Communications. The core p ... more

More about Charité