08-Jun-2022 - Deutsches Elektronen-Synchrotron DESY

Electronic quantum dance in molecules

Scientists watch moving charge density in real-time

An international research team led by DESY scientist Tim Laarmann has for the first time been able to monitor the quantum mechanically evolving electron charge distribution in glycine molecules via direct real-time measurement. The results – obtained at DESY´s brilliant free-electron laser FLASH – are published in the scientific journal Science Advances. Better knowledge of the quantum effects in the motion of electrons at the molecular level can pave the way to controlling, optimising, and engineering ionising radiation to be used for example in radiotherapy for cancer treatment.

“The amino acid glycine is an abundant basic building block of proteins and plays part in the recognition sites on cell membranes and enzymes,“ says Laarmann. “Due to its compact nature and tendencies to form hydrogen bonds it facilitates protein folding in biomolecular reactions. Stand-alone, it is utilized as an inhibiting neurotransmitter in the central nervous system.” Glycine has also been found in space and is therefore a first signature of extra-terrestrial life. The molecular reactivity in the harsh astronomical environments is an important aspect, and in particular how isolated molecules interact with ionizing radiation is a key question in astrochemistry.

When energetic radiation hits a glycine molecule, often one of its electrons gets knocked out of the molecule. In the resulting glycine ion, the electronic charge begins to redistribute itself, resulting in a time-dependent oscillation of the charge density. To ionise glycine, the team used the ultra-short pulses from FLASH, each lasting less than five femtoseconds, that is 5 quadrillionths of a second. “With these flashes and by applying sophisticated data processing algorithms we could surgically take out one of glycine's 40 electrons from a particular orbital,” reports first author David Schwickert from DESY who did his PhD on this project.

The scientist then used FLASH as a flash camera to record stills of the movement of the electronic charge. “For the first time, we could perform direct real-time measurements of the electron dynamics in this complex amino acid molecule, following ionisation,” explains Laarmann. The observations result in a movie showing 175 femtosecond of the oscillating electronic charge and how it affects nuclear motion. While the initial knock-out of the electron results in a positive charge at a specific atom in the molecule, the following charge oscillation creates a force field that makes the nuclei move as well.

Quantum mechanically, the outgoing electron leaves behind the molecular ion in a so-called coherent superposition of eigenstates. This coherence influences the way the molecule reacts chemically. Understanding this quantum behaviour may open a path to make biomolecules act in a desired way. “A prerequisite for any control of electronic and nuclear dynamics towards specific molecular reaction pathways is a detailed analysis of structural properties, when the molecule is driven out of equilibrium and here in particular the analysis and control of time-dependent electronic structure defining the potential energy landscape in which the nuclei move,” explains co-author Marco Ruberti from Imperial College London, who performed many-electron simulations of glycine together with a colleague from Charles University in Prague. “In agreement with our simulations, the glycine experiments at FLASH provide direct support for the existence of long-lived electronic coherence in photoionised biomolecules.”

Scientists from DESY, Imperial College London, Charles University Praha, University of Hamburg, University of Kassel, Helmut Schmidt University in Hamburg, Helmholtz Institute Jena, Helmholtz Centre for Heavy Ion Research (GSI) in Darmstadt, Friedrich-Schiller-Universität Jena, and the Helmholtz-Zentrum Berlin für Materialien und Energie were involved in the research.

Deutsches Elektronen-Synchrotron DESY

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
  • electrons
  • molecules
  • real-time measurements
  • quantum effects
  • glycine
More about Deutsches Elektronen-Synchrotron DESY
  • News

    How biomolecules react to UV light

    A sophisticated experiment provides new insights into the ultrafast reaction of biomolecules when they are hit by energetic ultraviolet light in their natural environment. The team of DESY scientist Jochen Küpper recorded the light-induced processes taking place in a small complex of two mo ... more

    Rare insights into growing nanoparticles

    How exactly do nanoparticles form in solution? Researchers from Universität Hamburg and DESY have now been able to observe the growth of nanoparticles in solution in real time. In the journal Nature Communications, they report on their observations using the method of X-ray ptychography, wh ... more

    How do molecular motors convert chemical energy in to mechanical work?

    Molecular motors are complex devices composed of many different parts that consume energy to perform various cellular activities. In short, molecular machines transform energy into useful work. Understanding the mechanistical aspects underlying these motors begins with generating a detailed ... more