Optimal concentrations of enzymes and their substrates

Until now, scientists assumed that no general relationship exists between the individual concentrations

01-Nov-2021 - Germany

Biological cells invest much of their resources into the production of enzymes, which catalyze the conversion of substrates into products. An international team of bioinformaticians and biophysicists, led by Prof. Martin Lercher from Heinrich Heine University Düsseldorf (HHU), discovered that these processes are most efficient at a certain relationship between the intracellular enzyme and substrate concentrations. They describe this discovery in the current issue of the journal PLOS Biology.

HHU / Martin Lercher

Schematic representation of the relationship between reaction flux (blue shading) and the mass concentrations of an enzyme and its substrate, with optimal efficiency along the diagonal.

Without enzymes, biological cells cannot function. Enzymes catalyze countless chemical reactions that would otherwise run too slowly or not at all. Thus, enzymes are essential molecular tools of cells to produce their building blocks, but also to regulate their processes.

Biological cells contain hundreds of different enzyme and substrate types. For molecular biology and for many areas of medicine, it is important to understand how their concentrations affect cellular functions. Such knowledge also helps biotechnologists to develop more efficient biological factories based on enzymes.

Until now, scientists assumed that no general relationship exists between the individual concentrations. A team of researchers of the HHU Institute for Computational Cell Biology and the Department of Physics of the University of California, San Diego (UCSD), has now derived such a relationship, based on the consideration of processes with optimal cellular efficiency.

The researchers conclude that the intracellular mass of a substrate should be equal to the mass of the free enzymes that are waiting to convert it into products. This relationship was confirmed with experimental data for the bacterium E. coli.

Prof. Lercher said about their results: „It is amazing that such a simple relationship seems to govern the concentrations in living cells. I wouldn’t be surprised if this important result will eventually find its way into textbooks for biochemistry and cellular physiology.”

Original publication

Other news from the department science

Most read news

More news from our other portals

Last viewed contents

A milestone on the pathway to Lab 4.0: A new standard for the smart lab - SPECTARIS presents the first industrial communication standard for laboratory and analytical devices

A milestone on the pathway to Lab 4.0: A new standard for the smart lab - SPECTARIS presents the first industrial communication standard for laboratory and analytical devices

Fish and seafood - improved trace detection of life-threatening allergy sources - "AQUALLERG-ID": Researchers develop methods for detecting potential food allergens

Fish and seafood - improved trace detection of life-threatening allergy sources - "AQUALLERG-ID": Researchers develop methods for detecting potential food allergens

PerkinElmer appoints President & Chief Operating Officer

ECHA calls for information to avoid unneccessary animal testing

Newly improved NIST reference material targets infant formula analysis

LAUDA appoints Dr. Ralf Hermann as the new General Manager Constant temperature equipment

LAUDA appoints Dr. Ralf Hermann as the new General Manager Constant temperature equipment

A relative from the Tianyuan Cave - Ancient DNA has revealed that humans living some 40,000 years ago in the area near Beijing were likely related to many present-day Asians and Native Americans

A relative from the Tianyuan Cave - Ancient DNA has revealed that humans living some 40,000 years ago in the area near Beijing were likely related to many present-day Asians and Native Americans

Measurable for the first time: How bio molecules react to lack of space - Sensor demonstrates lack of space in living cells

Measurable for the first time: How bio molecules react to lack of space - Sensor demonstrates lack of space in living cells

Using AI to identify genetic perturbations from cell images - Newly founded start-up aims to use findings to treat previously incurable fibrosis

Using AI to identify genetic perturbations from cell images - Newly founded start-up aims to use findings to treat previously incurable fibrosis

Researchers can measure distances in molecules optically - MINFLUX microscopy allows the determination of distances within biomolecules using an optical microscope

Researchers can measure distances in molecules optically - MINFLUX microscopy allows the determination of distances within biomolecules using an optical microscope

You can't teach old materials new tricks - Decades-old challenge has researchers seeking new materials for radiation detection

MedMira Files Patent Application for Next Generation Rapid Test