26-Nov-2020 - Universität Konstanz

Shining a light on nanoscale dynamics

Watching metamaterials at work in real time using ultrafast electron diffraction

Physicists from the University of Konstanz, Ludwig-Maximilians-Universität München (LMU Munich) and the University of Regensburg have successfully demonstrated that ultrashort electron pulses experience a quantum mechanical phase shift through their interaction with light waves in nanophotonic materials, which can uncover the nanomaterials' functionality. The corresponding experiments and results are reported in the latest issue of Science Advances.

Nanophotonic materials and metamaterials

Many materials found in nature can influence electromagnetic waves such as light in all different kinds of ways. However, generating novel optical effects for the purpose of developing particularly efficient solar cells, cloaking devices or catalysts often requires artificial structures, so-called metamaterials. These materials achieve their extraordinary properties through sophisticated structuring at the nanoscale, i.e. through a grid-like arrangement of smallest building blocks on length scales well below the wavelength of the excitation.

The characterization and development of such metamaterials requires a deep understanding of how the incident light waves behave when they hit these tiny structures and how they interact with them. Consequently, the optically-excited nanostructures and their electromagnetic near fields must be measured at spatial resolutions in the range of nanometres (~10-9 m) and, at the same time, at temporal resolutions below the duration of the excitation cycle (~10-15 s). However, this cannot be achieved with conventional light microscopy alone.

Ultrafast electron diffraction of optically-excited nanostructures

In contrast to light, electrons have a rest mass and therefore offer 100,000 times better spatial resolution than photons. In addition, electrons can be used to probe electromagnetic fields and potentials due to their charges. A team led by Professor Peter Baum (University of Konstanz) has now succeeded in applying extremely short electron pulses to achieve such a measurement. To that end, the duration of the electron pulses was compressed in time by means of terahertz radiation to such an extent that the researchers were able to resolve the optical oscillations of the electromagnetic near fields at the nanostructures in detail.

High spatial and temporal resolutions

"The challenge involved with this experiment lies in making sure that the resolution is sufficiently high both in space and in time. To avoid space charge effects, we only use single electrons per pulse and accelerate these electrons to energies of 75 kiloelectron volts", explains Professor Peter Baum, last author on the study and head of the working group for light and matter at the University of Konstanz's Department of Physics. When being scattered by the nanostructures, these extremely short electron pulses interfere with themselves due to their quantum mechanical properties and generate a diffraction image of the sample.

Interaction with the electromagnetic fields and potentials

The investigation of the optical-excited nanostructures is based on the known principle of pump-probe experiments. After the optical excitation of the near fields, the ultrashort electron pulse arrives at a defined point in time and measures the time-frozen fields in space and time. "According to the predictions of Aharonov and Bohm, the electrons experience a quantum mechanical phase shift of their wave function when travelling through electromagnetic potentials", explains Kathrin Mohler, a doctoral researcher at LMU Munich and first author on the study. These optically-induced phase shifts provide information about the ultrafast dynamics of light at the nanostructures, ultimately delivering a movie-like sequence of images that reveals the interaction of light with the nanostructures.

A new application regime for electron holography and diffraction

These experiments illustrate how electron holography and diffraction can be harnessed in the future to improve our understanding of fundamental light-matter interactions underlying nanophotonic materials and metamaterials. In the long term, this may even lead to the development and optimization of compact optics, novel solar cells or efficient catalysts.

Facts, background information, dossiers
  • metamaterials
  • real-time analysis
  • nanostructures
More about Uni Konstanz
More about LMU
  • News

    Comparison of two nano rulers

    In the Middle Ages, every city had its own system of measurement. Even today, you can sometimes find iron rods in marketplaces that determined the length measurement valid for the city at that time. In science, however, there is no room for such uncertainties, and no matter what method you ... more

    Most powerful dual-comb spectrometer developed

    Scientists from Hamburg and Munich developed the world's most powerful dual-comb spectrometer that paves the way for many applications in atmospheric science and biomedical diagnostics, such as early cancer detection. The work has recently been published in Nature Communications. The core p ... more

    Finding the invisible

    Higher organisms store their genetic material in the nuclei of cells as deoxyribonucleic acid (DNA). In a process called transcription, individual segments, the genes, are converted into messenger ribonucleic acids (mRNAs). Subsequently, the translation process produces proteins as the most ... more

More about Uni Regensburg
  • News

    A novel microscope pins down the miracle of molecular oxygen

    Why is it that the colours of a t-shirt fade over time in the sun? Why do you get a sunburn, and why do the leaves of a tree turn brown in the autumn? These questions all have one theme in common, the interplay between dye pigments and ambient oxygen. Every child learns about this chemical ... more

    Social Distancing on the Nanoscale

    A team of physicists from Germany, the US and the UK managed to observe the motion of electrons from one atomically thin layer into an adjacent one with nanoscale spatial resolution. The new contact-free nanoscopy concept, which shows great potential for investigations into conducting, nonc ... more

    A single molecular switch reveals atomic-scale light dynamics

    Researchers at the the University of Regensburg and the MPSD in Hamburg have developed a groundbreaking method to detect the dynamics of light on such a small scale with high temporal resolution. Since the 17th century, researchers have explored tiny objects in their most fundamental detail ... more