26.11.2020 - Universität Konstanz

Dynamische Nanowelt im Fokus

Beobachtung von Metamaterialien in Echtzeit

Physiker der Universität Konstanz, der Ludwig-Maximilians-Universität München (LMU München) und der Universität Regensburg haben experimentell nachgewiesen, dass ultrakurze Elektronenpulse durch die Interaktion mit Lichtwellen in nanophotonischen Materialien eine quantenmechanische Phasenverschiebung erfahren, mittels derer sich die Funktionsweise von Nanomaterialien bei Lichteinstrahlung direkt sichtbar machen lässt. Die Ergebnisse sind in der neuesten Ausgabe von Science Advances erschienen.

Nanophotonische Materialien und Metamaterialien

In der Natur finden sich viele Materialien, die elektromagnetische Wellen wie Licht auf verschiedenste Art und Weise beeinflussen können. Für die Erzeugung neuartiger optischer Effekte zur Entwicklung von besonders effizienten Solarzellen, Tarnkappen oder Katalysatoren bedarf es dagegen meist künstlicher Strukturen, sogenannter Metamaterialien. Diese Materialien erzielen ihre außergewöhnlichen Eigenschaften durch eine ausgefeilte Nanostrukturierung, das heißt, durch eine rasterförmige Anordnung kleinster Bausteine auf Längenskalen deutlich unterhalb der Wellenlänge des Anregungslichtes.

Um solche Metamaterialien charakterisieren und weiterentwickeln zu können, müssen die Wissenschaftler verstehen, wie sich die einfallenden Lichtwellen an den kleinen Strukturen verhalten und mit ihnen interagieren. Folglich müssen die optisch angeregten Nanostrukturen und ihre elektromagnetischen Nahfelder sowohl mit einer räumlichen Auflösung im Bereich von Nanometern (~10-9 m) als auch mit einer zeitlichen Auflösung unterhalb des Anregungszyklus (~10-15 s) vermessen werden. Die herkömmliche Lichtmikroskopie allein gelangt hier jedoch an ihre Grenzen.

Ultraschnelle Elektronenbeugung an optisch angeregten Nanostrukturen

Elektronen haben im Gegensatz zu Licht eine Ruhemasse und bieten daher eine 100.000-fach bessere räumliche Auflösung als Licht. Darüber hinaus dienen Elektronen mittels ihrer Ladung auch als Sensoren für elektromagnetische Felder und Potentiale. Jetzt gelang es einem Team unter der Leitung von Prof. Dr. Peter Baum (Universität Konstanz), extrem kurze Elektronenimpulse erfolgreich für eine derartige Messung einzusetzen. Die Dauer der Elektronenimpulse wurde dafür mittels Terahertz-Strahlung in der Zeit so stark komprimiert, dass die Forschenden die optischen Schwingungen der elektromagnetischen Nahfelder an den Nanostrukturen detailliert auflösen konnten.

Hohe Auflösungen in Raum und Zeit

„Die Herausforderung bei diesem Experiment besteht in der hohen Auflösung, die gleichzeitig in Raum und Zeit gewährleistet werden muss. Um Raumladungseffekte zu vermeiden, verwenden wir nur einzelne Elektronen pro Impuls und beschleunigen diese Elektronen auf Energien von 75 Kiloelektronenvolt“, erklärt Peter Baum, Letztautor der Studie und Leiter der Arbeitsgruppe für Licht und Materie am Fachbereich Physik der Universität Konstanz. Werden diese extrem kurzen Elektronenimpulse an den Nanostrukturen gestreut, interferieren sie aufgrund ihrer quantenmechanischen Eigenschaften mit sich selbst und erzeugen ein Beugungsbild der Probe.

Wechselwirkung mit den elektromagnetischen Feldern und Potentialen

Die optische Anregung der Nanostrukturen wird nach dem Anregungs-Abfrage-Prinzip untersucht. Nach der optischen Anregung der Nahfelder kommt zu einem definierten Zeitpunkt der ultrakurze Elektronenimpuls und misst die zeitlich eingefrorenen Felder in Raum und Zeit. „Gemäß den Vorhersagen von Aharonov und Bohm verschiebt sich die quantenmechanische Phase der Wellenfunktion der Elektronen, wenn sie durch elektromagnetische Potentiale fliegen“, erläutert Kathrin Mohler, Doktorandin an der LMU München und Erstautorin der Studie. Diese optisch induzierten Phasenverschiebungen liefern einen Einblick in die ultraschnelle Lichtdynamik an den Nanostrukturen, so dass letztlich eine filmartige Bildersequenz von der Wechselwirkung des Lichts mit den Nanostrukturen entsteht.

Erschließung neuer Anwendungsgebiete für Elektronenholografie und -beugung

Diese Experimente zeigen auf, wie sich in Zukunft mit der Elektronenholografie und -beugung die grundlegenden Licht-Materie-Wechselwirkungen in nanophotonischen Materialien und Metamaterialien besser verstehen lassen. Dadurch könnten kompakte Optiken, neuartige Solarzellen oder effiziente Katalysatoren entwickelt und optimiert werden.

Fakten, Hintergründe, Dossiers
  • Metamaterialien
  • Echtzeit-Beobachtungen
  • Nanostrukturen
Mehr über Uni Konstanz
  • News

    Lichtinduzierte Formänderung von MXenen

    Das Verfahren der ultraschnellen Laserspektroskopie ermöglicht die Beobachtung der Bewegung von Atomen auf ihren natürlichen Zeitskalen im Bereich von Femtosekunden, dem Millionstel einer milliardstel Sekunde. Die Elektronenmikroskopie hingegen bietet eine atomare räumliche Auflösung. Durch ... mehr

    Dem „Parkinson-Protein“ auf der Spur

    Wissenschaftlern der Universität Konstanz und der Freien Universität Amsterdam gelingt in Zusammenarbeit mit dem Entwicklungsteam des Unternehmens Bruker BioSpin erstmals der direkte, spektroskopische Nachweis der Bindung des „Parkinson-Proteins“ α-Synuclein an Lipidmembranen in der Zelle. ... mehr

    Effektivere Screening-Methode verbessert Identifikation von Wirkstoffen gegen Viren

    Vor allem bei der Suche nach Medikamenten gegen Viren sind aussagekräftige Methoden gefragt, mit denen Wirkstoffe identifiziert werden können. Sehr aktuell derzeit ist die Suche nach antiviralen Wirkstoffen gegen Viren wie SARS-CoV-2 und anderen Organismen mit ähnlichen Proteasen. Wissensch ... mehr

Mehr über LMU
Mehr über Uni Regensburg
  • News

    Mit einem neuartigen Mikroskop dem Wunder des Sauerstoffs auf der Spur

    Warum bleicht das Lieblings-T-Shirt in der Sonne mit der Zeit aus? Warum bekommt man Sonnenbrand und warum kündigt sich der Herbst mit braunen Blättern an? Diese Fragen haben alle eines gemein: das Wechselspiel zwischen Farbstoffpigmenten und dem Sauerstoff der Luft. Diese chemische Reaktio ... mehr

    Erstmals chemische Bindungen zu künstlichen Atomen gemessen

    Atome bestehen aus einem sehr kleinen Kern, der von einer etwa 100.000 Mal größeren Elektronenhülle umgeben wird. Diese Elektronen haben quantisierte Energiezustände und bestimmen die mechanischen, elektronischen und optischen Eigenschaften der Materie. Künstliche Atome sind vom Menschen ge ... mehr

    Social Distancing im Nanokosmos

    Forscher an der Universität Regensburg konnten zum ersten Mal die Bewegung von Elektronen von einer atomar dünnen Schicht in eine andere mit Nanometer-Auflösung beobachten. Und das kontaktfrei. Das neue Nanoskopie-Verfahren, das großes Potential in der Untersuchung von leitenden, nichtleite ... mehr