3D images display plant organs down to the smallest detail
Intelligent software for a better understanding of plant tissue development
Using artificial intelligence, researchers have developed a novel computer-based image processing method for plant sciences. The method enables the detailed 3D representation of all cells in various plant organs with unprecedented precision.
Microscopy provides imagery to the algorithm that then delineates the cellular structures, making the segmentation clearer.
K. Schneitz / TUM
Plant organs, such as the root, the shoot axis, the leaves, and the flowers, have a variety of tasks. They ensure that the plant can develop and grow, and that it can ensure the survival of its species by forming seeds. But how do plants shape their organs? How is genetic information used to build the three-dimensional form i.e. the shape of an organism?
Kay Schneitz, Professor of Plant Developmental Biology the Technical University of Munich (TUM), is concerned with the molecular basis of flower development and plant reproduction. He is co-spokesman of a research group of the German Research Foundation (DFG-FOR 2581) that has been investigating how cells coordinate their behavior to give the plant a shape (morphogenesis).
Detailed 3D analysis of the structure of plant tissue using software
In the past, researchers used primarily 2D technologies to analyze how a plant gets its shape. “But morphogenesis naturally takes place in three-dimensional space as well as in the fourth dimension, time,” says Prof. Schneitz. “2D approaches, for example using tissue sections, therefore only allow partial insights into this process and, unfortunately, often produce incorrect results.”
Prof. Schneitz and his colleagues, the molecular biologists Athul Vijayan and Rachele Tofanelli, working together with colleagues from computer science and physics have now developed a new tool to solve this problem.
From computer code to a user-friendly graphic interface, researchers around the world now have access to open source software called PlantSeg, which enables the most accurate and versatile analysis of plant tissue development in 3D to date.
Machine learning - the software is trained
When researchers want to study the morphogenesis of tissues on the cellular level, it is necessary to image individual cells. To do that, the cells must be separated from each other, in other words, “segmented” in order to analyze how they change over time.
“In plants, there are cells that look extremely regular, like rectangles or cylinders, in a cross-section,” says Anna Kreshuk, the senior author of a recent publication of the group’s research, “but you also have cells with “high lobeness” that is to say protrusions, which make them look more like puzzle pieces. These are more difficult to segment because of their irregularities.”
To deal with this, the team utilized machine learning, a method from the field of artificial intelligence. The scientists trained PlantSeg using 3D microscope images of reproductive organs and roots of the plant model arabidopsis thaliana, also known as thale cress. From these images, the algorithm had to learn to identify inconsistencies in the sizes and shapes of cells. It mastered this challenge so well that the software can now be used for practically all plant organs.
PlantSeg - a wide range of applications
PlantSeg not only enables studies of the development of plant organs with unprecedented precision, but also the analysis of tissue changes caused by pest infestation or environmental stress, such as heat. The scientists hope that this will give them a better understanding of how plants react to environmental conditions.
This method could also be adapter for animal tissue. “With animals, we would probably have to retrain parts of the software, but it would work,” states Kreshuk. With such an adaptation of the software, the group will have created a tool of great significance beyond the plant world and with which, for example, disease-related tissue changes will be able to be analyzed much more precisely.
Original publication
Other news from the department science
These products might interest you
Get the analytics and lab tech industry in your inbox
By submitting this form you agree that LUMITOS AG will send you the newsletter(s) selected above by email. Your data will not be passed on to third parties. Your data will be stored and processed in accordance with our data protection regulations. LUMITOS may contact you by email for the purpose of advertising or market and opinion surveys. You can revoke your consent at any time without giving reasons to LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin, Germany or by e-mail at revoke@lumitos.com with effect for the future. In addition, each email contains a link to unsubscribe from the corresponding newsletter.
Most read news
More news from our other portals
Last viewed contents
Molecular containers to capture the imagination
Cancer cells on the wrong path - How adaptations can make cancer treatment more difficult
Nanotechnology: Study shows urgent need for reference materials - Two new developments could bring decisive progress
First 3-D structure of DHHC enzymes reported
Third-highest oxidation state secures rhodium a place on the podium - Discovery is a real surprise
Tears instead of Blood - Sensor with separation capability: diagnosing jaundice using tear fluids
New test could identify smokers at risk of emphysema - CT scans can detect differences in lung blood flow patterns, which identify smokers most at risk of emphysema
Rice study: 'nanostars' could be ultra-sensitive chemical sensors - Scientists observe strong spectral signals from spikes on gold particles
Predicting the mode of action of new anti-cancer drugs with AI - Acceleration of the development of new cancer drugs
Chemists develop MRI-like technique to detect what ails batteries
New corona mass test up to 100 times more sensitive than rapid antigen tests - The innovative corona test "LAMP-Seq"