Nearly two years since becoming a global pandemic that has killed millions of people, the mystery of which proteins in the SARS-CoV-2 virus are responsible for severe vascular damage that could even lead to heart attack or stroke has not yet been solved. Now, for the first time, a team of e ... more
Glow Reveals Dangerous Bacteria
Chemiluminescence probes for the rapid and sensitive detection of salmonella and listeria
Salmonella and listeria are among the most widely distributed and deadliest causes of foodborne infections. Their rapid and reliable detection on food and industrial food processing equipment is very important. In the journal Angewandte Chemie, scientists have introduced a new, ultrasensitive, chemiluminescence-based method for the direct detection of Salmonella and Listeria monocytogenes. Because of the simplicity and sensitivity, this test is significantly faster than conventional methods and can be carried out in the field.
It is estimated that about a million people per year are infected with salmonella infections in the USA alone. Of these, 380 die. Infections with listeria can also often be fatal. Current testing methods usually require the growth of bacterial cultures in a containment laboratory. A conclusive result based on standard diagnostic techniques generally takes two to six days.
Researchers working with Urs Spitz and Doron Shabat at the University of Tel Aviv, Nemis Technologies AG (Zurich, Switzerland), Zurich University of Applied Sciences, and Biosynth AG (Staad, Switzerland) have now introduced a new and efficient method for the ultrasensitive and significantly faster detection of Salmonella and Listeria. The method is based on chemiluminescence—the emission of light resulting from a chemical process. The simplicity of the tests allows for both enrichment of the bacteria and their detection in a test tube, with no further sample preparation, so no containment laboratory is required. The chemiluminescence probes have proven to be about 600 times more sensitive than conventional fluorescence probes.
The success of this technique is due to two specially developed probe molecules made by combining a luminescent substance (a phenoxy-dioxetane) with a “trigger”. In this form the probe does not light up. The trigger is tailored to the bacteria to be detected: it is recognized by a specific enzyme produced by the pathogen—a special esterase in the case of Salmonella and a special phospholipase C for Listeria—that splits it from the luminescent part. This initiates a chemical reaction that causes the luminescent molecule to split off more pieces. The energy released by the reaction is emitted in the form of a very intense green glow. Tests with various bacteria demonstrated that the probe tailored to Listeria test only reacts to Listeria monocytogenes, not to other, non-pathogenic, strains of listeria. The intensity of the glow can be used to quantify the concentration of bacteria. The tests are so sensitive that, for example, a count of ten salmonella can be detected within six hours of enrichment. Even dried bacteria can be swabbed from surfaces and detected.
The researchers are confident that their new method can be used more broadly to develop specific chemiluminescence probes for other bacteria.
-
News
New biomarker links cancer progression to genome instability
Our DNA is under constant attack. The delicate molecule that contains our genetic information is extremely vulnerable to everything from environmental agents, such as radiation, to the chemicals in the air we breathe and the food we eat. Genome instability can lead to genetic disorders, chr ... more
A glow stick that detects cancer?
Chemiluminescence, or chemical light, is the principle behind the glow sticks (also known as light sticks) used at rock concerts and as quick tools to grab when the electricity goes out. But they can also be used to diagnose diseases by identifying concentrations of biological samples. A ne ... more
-
News
The quantitative detection of specific antibodies in complex samples such as blood can inform on many different diseases but usually requires a complicated laboratory procedure. A new method for the rapid, inexpensive, yet quantitative and specific point-of-care detection of antibodies has ... more
Many proteins contain patterns of sugar molecules (glycans) and are made of several aggregated subunits. This glycosylation and oligomerization has a decisive influence on protein function and must be considered in biopharmaceutical development. In the journal Angewandte Chemie, a British t ... more
Spectroscopically Controlled Quantum Bits
Molecules could make useful systems for quantum computers, but they must contain individually addressable, interacting quantum bit centers. In the journal Angewandte Chemie, a team of researchers has now presented a molecular model with three different, coupled qubit centers. As each center ... more
- 1Can the AI driving ChatGPT help to detect early signs of Alzheimer's disease?
- 2Simple nasal swab can provide early warning of emerging viruses
- 3Holes in T cells
- 4Diagnosing cancer in minutes
- 5A mobile breakthrough for water environment monitoring
- 6Molecular archeology: 1200-year-old DNA sequences from Madagascar lead to the discovery of an extinct tortoise
- 7Sartorius with clear double-digit growth in fiscal 2022
- 8Bruker Announces Acquisition of ACQUIFER Imaging GmbH
- 9How old is your brain, really?
- 10The architecture of shattered genomes
- Scientist resolves one of the holy grails of physical chemistry after 17 years of research
- Researchers have succeeded in identifying the proteins in the coronavirus that can damage blood vessels
- Can chips replace animal testing?
- Researcher Develops One Minute Coronavirus Test
- Glow Reveals Dangerous Bacteria