10.09.2013 - Technische Universität Darmstadt

Molekulare Spiegelbilder zugeordnet

Bessere Medikamente möglich

Moleküle können wie Handschuhe in einer linken oder rechten Form vorliegen. Bislang kann man jedoch nur unter großen Schwierigkeiten bestimmen, ob es sich um die sogenannte rechtshändige oder linkshändige Version handelt. In der Medizin wäre das aber ein großer Fortschritt, denn damit ließen sich zum Beispiel unerwünschte Nebenwirkungen von Medikamenten vermeiden. In der aktuellen Ausgabe der Fachzeitschrift Science berichtet ein Forscherteam aus Deutschland, Kanada und der Schweiz über eine neue Lösung für ein 150 Jahre altes Problem.

„Vergrößerung“ durch Explosion

Wie bestimmt man bei Molekülen, ob es sich um die rechts- und linkshändige Version handelt? Bisher gelang die direkte Bestimmung der Händigkeit nur in festen, kristallinen Substanzen durch ein spezielles Verfahren, bei dem die Kristallstruktur mithilfe von Röntgenstrahlen analysiert wird. „Das Problem bei dieser Methode ist, dass nicht jede Substanz so einfach kristallisiert oder leicht in einen geeigneten Kristall eingebracht werden kann. Wir haben deswegen eine Methode untersucht, bei der die Händigkeit in der Gasphase direkt bestimmt werden kann“, erläutert Prof. Robert Berger vom Clemens-Schöpf Institut der TU Darmstadt.
Sie stützt sich auf eine „Vergrößerung“ durch Explosion. Man stelle sich einen Gummihandschuh vor, den man solange aufbläst, bis er zerplatzt. Folgt man der Flugbahn jedes einzelnen Fingers in umgekehrter Richtung, erhält man den ursprünglichen Handschuh und sieht, ob es sich um einen rechten oder linken Handschuh handelt. Ähnlich gingen die Forscher auch bei dem beispielhaft untersuchten Molekül vor.

Als Testobjekt verwendeten sie Bromchlorfluormethan, eine leicht verdampfbare, flüssige Kohlenstoffverbindung mit vier verschiedenen Bindungspartnern. Das Molekül hat die Form eines Tetraeders mit Kohlenstoff in der Mitte und Wasserstoff, Brom, Chlor und Fluor an den Ecken. Die Händigkeit ergibt sich aus der Verteilung der Bindungspartner auf die vier Ecken. Um sie zu ermitteln, entfernt man mit einem intensiven Laserstrahl auf einen Schlag jeweils ein Elektron von allen Atomen. Das nun fünffach positiv geladene Molekül explodiert dann aufgrund der hohen Abstoßung zwischen den positiv geladenen Bausteinen. Die Teilchen prallen anschließend auf einen Detektor, der die Dauer des Fluges und den Ort des Aufschlags bestimmt und so Rückschlüsse auf die Flugbahn erlaubt. Daraus lässt sich die räumliche Anordnung der Atome im Molekül vor der Explosion rekonstruieren.

Vielfältige Anwendungen

„Die Methode eröffnet neue Perspektiven für die Untersuchung und Analytik händiger Moleküle in der Physik, Chemie und Pharmazie“, prognostiziert Dr. Markus Schöffler vom Institut für Kernphysik der Goethe-Universität. So könnten zum Beispiel Medikamente produziert werden, in denen nur die Moleküle der gewünschten Händigkeit vorkommen. Auch die Dosis könnte somit reduziert werden. Doch auch andere Industriebranchen würden profitieren: Bei Carvon etwa, einem Bestandteil ätherischer Öle, entscheidet die Händigkeit darüber, ob es nach Pfefferminz oder nach Kümmel riecht. In anderen Substanzen wechselt der Geschmack zum Beispiel von bitter nach süß.

„Nur mit der gewünschten Molekülform zu arbeiten, ist allerdings ein langfristiges Ziel“, gibt Berger zu bedenken. „Wir haben jetzt zunächst einmal für das Lehrbuchbeispiel einer händigen Substanz den Nachweis geliefert, dass eine direkte Zuordnung in der Gasphase möglich ist.“

Fakten, Hintergründe, Dossiers
  • Medikamente
  • TU Darmstadt
  • Kristallstruktur
  • Chemie
Mehr über TU Darmstadt
  • News

    Der KI vertrauen, aber nicht blind

    Ein Forschungsteam der TU Darmstadt um Professor Kristian Kersting beschreibt in der Zeitschrift „Nature Machine Intelligence“, wie dies gelingen kann – mit einem cleveren Ansatz des interaktiven Lernens. Man stelle sich folgende Situation vor: Eine Firma möchte einer Künstlichen Intelligen ... mehr

    Sensoren aus bioinspirierten Nanoporen

    Mediziner und Umweltanalytiker wünschen sich Mikrochips, die Substanzen direkt vor Ort messen. Wissenschaftler der TU Darmstadt haben ein auf Nanoporen basiertes System mit breitem Potential entwickelt und patentiert. Wer heute Laborwerte zur Diagnostik einer Erkrankung oder deren Verlaufsk ... mehr

    Bessere Methoden für Suche nach Antikörpern

    Dr. Simon Krah erhält den mit 12.000 Euro dotierten Kurt-Ruths-Preis 2019 für seine methodischen Verbesserungen bei der Suche nach neuen therapeutischen Antikörpern für die Medizin. Er hat den Prozess schneller, effizienter und zielgerichteter gemacht. Elf Publikationen, eine davon als Let ... mehr

Mehr über Uni Frankfurt am Main
  • News

    Wie Stickstoff per Katalysator übertragen wird

    Metallkatalysatoren können Stickstoff auf organische Moleküle übertragen. Bei solchen Reaktionen treten kurzlebige Verbindungen auf, deren Funktion für die Produktbildung durch die chemische Bindung von Metall und Stickstoff maßgeblich bestimmt wird. Die Struktur und chemische Bindung eines ... mehr

    Smarte hauchdünne Nanoblätter fischen Proteine

    Eine Art Köder, um gezielt Proteinkomplexe aus Mischungen fischen zu können, hat ein interdisziplinäres Team aus Frankfurt und Jena entwickelt. Dank dieses „Köders“ ist das gewünschte Protein wesentlich schneller für die weitere Untersuchung im Elektronenmikroskop verfügbar. Diese neuartige ... mehr

    Momentaufnahmen von explodierendem Sauerstoff

    Seit mehr als 200 Jahren nutzen Menschen Röntgenstrahlen, um ins Innere der Materie zu schauen. Dabei dringen sie zu immer kleineren Strukturen vor – vom Kristall bis zum Nanopartikel. Jetzt ist Physikern der Goethe-Universität im Rahmen einer großen internationalen Kollaboration am Röntgen ... mehr