07.12.2022 - Freie Universität Berlin

Bausteine des Lebens wären in unserem Sonnensystem technisch nachweisbar

Biomoleküle auf Ozeanmonden aufspüren

Künftig wären Weltraummissionen zumindest technisch in der Lage, DNA, Lipide und weitere Bestandteile von Bakterien auf Ozeanmonden in unserem Sonnensystem aufzuspüren ­- sofern es solche Bausteine des Lebens außerhalb der Erde geben sollte. Das hat ein internationales Team, geführt von Wissenschaftlerinnen und Wissenschaftlern der Forschungsgruppe Planetologie und Fernerkundung der Freien Universität Berlin, in Laborexperimenten nun nachgewiesen. Die Studie entstand im Rahmen des Forschungsprojektes „Habitat OASIS“, das vom Europäischen Forschungsrat mit einem ERC Consolidator Grant gefördert wird, und wurde in der wissenschaftlichen Fachzeitschrift Astrobiology veröffentlicht.

Enceladus, einer der Monde des Saturn, ist berühmt für seine kryovulkanischen Fontänen, die er ins Weltall ausstößt. Diese Fontänen bestehen zum Großteil aus Eiskörnern, die von einem unterirdischen Wasserozean stammen. Ähnliche Prozesse finden vermutlich auch auf Jupiters Mond Europa statt. Raumsonden können die ausgestoßenen Eiskörner mit sogenannten Einschlagsionisations-Massenspektrometern analysieren und geben somit Einblick in die Zusammensetzung des unterirdischen Ozeanwassers. Wissenschaftlerinnen und Wissenschaftlern der Freien Universität Berlin ist es nun erstmals in Laborexperimenten gelungen, das Erscheinungsbild von Bakterien-Bestandteilen in Massenspektren solcher Eiskörner detailgetreu vorherzusagen. „In unseren Experimenten konnten wir zeigen, dass DNA, Lipide und sogar Zwischenprodukte von Stoffwechselvorgängen in den ausgestoßenen Eiskörnern mit zukünftigen Raumsonden technisch eindeutig nachweisbar wären“, erläutert Dr. Fabian Klenner, einer der Erstautoren der Studie. „Das funktioniert sogar, wenn diese Biomoleküle in nur wenigen Eisteilchen und in sehr geringen Konzentrationen vorkämen.“

Im Rahmen ihrer Studie untersuchten die Forschenden zwei verschiedene Arten von Bakterien und stellten fest, dass einige der untersuchten Biomoleküle klar voneinander unterscheidbare und vom jeweiligen Bakterium abhängige biologische „Fingerabdrücke“ in den Massenspektren hinterlassen. „Es ist also nicht nur möglich, Bestandteile von Bakterien auf außerirdischen Wasserwelten zu identifizieren, sondern auch verschiedene Bakterienarten voneinander zu unterscheiden“, betont Dr. Fabian Klenner.

Die Ergebnisse dieser Studie kommen gerade rechtzeitig für NASA‘s Europa Clipper Mission, die im Oktober 2024 zu Jupiters Mond Europa starten soll. Die Raumsonde wird ein Massenspektrometer mitführen, das für das Aufspüren der Bausteine des Lebens geeignet ist und an dem die Forschungsgruppe Planetologie und Fernerkundung der Freien Universität Berlin maßgeblich beteiligt ist.

Die internationale Studie wurde in Zusammenarbeit mit Wissenschaflerinnen und Wissenschaftlern der Universität Zürich, der Open University in Milton Keynes, NASA’s Jet Propulsion Laboratory in Kalifornien und der Universität Leipzig durchgeführt.

Fakten, Hintergründe, Dossiers
  • Desoxyribonukleinsäure
  • Lipide
  • Bakterien
Mehr über Freie Universität Berlin
  • News

    Was passiert, wenn das Atomgitter eines Magneten erhitzt wird?

    Ein internationales Forscherteam hat nach eigener Einschätzung physikalische Prozesse aufgeklärt, die bei einer extrem plötzlichen Erhitzung des Atomgitters von sogenannten Ferrimagneten ablaufen. Ferrimagnete bestehen aus zwei Sorten atomarer Magnete, deren Magnetisierungen unterschiedlich ... mehr

    Wie Schalter in Bakterien funktionieren

    Viele Bakterien besitzen molekulare Kontrollelemente, über die sie Gene an- und abschalten können. Diese Riboschalter eröffnen neue Möglichkeiten bei der Entwicklung von Antibiotika oder auch zum Aufspüren und Abbauen von Umweltgiften. Wie die Riboschalter funktionieren, haben Forscher des ... mehr

    Zucker im Windkanal: Durchbruch für die Glykobiologie

    Einem Berliner Forscherteam um Kevin Pagel von der Freien Universität Berlin und dem Fritz-Haber-Institut der Max-Planck-Gesellschaft und Peter Seeberger vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam und der Freien Universität Berlin haben die Analyse von Kohlenh ... mehr