15.12.2021 - Max-Planck-Institut für molekulare Physiologie

Coole Mikroskopie: Das Unsichtbare wird sichtbar

Ultraschnelles Abkühlen ermöglicht die Beobachtung der molekularen Muster des Lebens

Die Fluoreszenzmikroskopie bietet die einzigartige Möglichkeit, zelluläre Prozesse über vier Größenordnungen hinweg zu beobachten. Ihre Anwendung in lebenden Zellen wird jedoch durch sehr schnelle und unaufhörliche Molekularbewegungen und durch die licht-induzierte Zerstörung der Fluoreszenzsonden fundamental eingeschränkt. Der ultraschnelle Kryo-Arrest direkt während der Beobachtung lebender Zellen unter dem Mikroskop, entwickelt von der Gruppe um Prof. Philippe Bastiaens am Max-Planck-Institut für molekulare Physiologie in Dortmund, umgeht nun diese fundamentalen Probleme und ermöglicht so die Beobachtung von molekularen Mustern des Lebens, die ansonsten unsichtbar sind.

Die fast 100 Billionen Zellen unseres Körpers leben, weil sie sich durch ständigen Energieverbrauch in einem permanent aktiven Zustand halten. Zellen bestehen dabei aus Organisationsmustern, gebildet aus dem kollektiven und von ständiger Dynamik geprägten Verhalten von Milliarden von Nanometer-kleinen Biomolekülen wie Proteinen, Lipiden, Nukleinsäuren und anderen Molekülen, die scheinbar unorganisiert herumschwirren. Um wahrzunehmen, wie aus dieser unaufhörlichen Aktivität eine höhere Organisation entsteht, können biomolekulare Spezies selektiv mit Fluoreszenzsonden ausgestattet werden. Diese fluoreszierenden Moleküle sind Photonenkatalysatoren: Sie absorbieren energiereiche Photonen (z. B. blaues Licht) und emittieren anschließend Photonen mit geringerer Energie (Rotverschiebung). Diese Photonen können durch ein Mikroskop abgebildet werden. So können nicht nur die markierten Biomoleküle genau lokalisiert, sondern auch lokale molekulare Reaktionen beobachtet werden. Lichtinduzierte Zerstörung der Sonden sowie die Bewegungsunschärfe durch die lebensnotwendige Molekularbewegung verhindern jedoch die präzise Beobachtung der Etablierung zellulärer Strukturen durch die molekularen Prozesse des Lebens.

Unschärfeprinzip in der Fluoreszenzmikroskopie

Wie gut eine bestimmte Struktur oder ein Molekül durch die Fluoreszenzmikroskopie tatsächlich auflösbar ist, hängt im Wesentlichen von der Lichtmenge ab, die von dieser Struktur gesammelt werden kann. Dies ist vergleichbar mit dem Versuch, die Sterne am Nachthimmel zu sehen. Auf den ersten Blick sichtbar sind nur solche Sterne sichtbar die deutlich heller als ihre Umgebung sind. Fotografieren wir jedoch den Nachthimmel mit einer langen Belichtungszeit, werden mehr Sterne sichtbar, die jedoch durch die Erdrotation unscharf erscheinen. In ähnlicher Weise kann man bei der Fluoreszenzmikroskopie die Belichtungszeit verlängern, um mehr Licht einzufangen. Mikroskopische Strukturen stehen jedoch nie still, sondern weisen sowohl brownsche als auch gerichtete Bewegungen auf. Eine verlängerte Belichtungszeit führt daher zu einer Bewegungsunschärfe. In diesem Fall ist die Bewegung der kleinen Strukturen jedoch sehr schnell im Vergleich zu der Photonenkatalyse durch die Fluoreszenzsonden, so dass die Genauigkeit nicht durch bessere Detektoren oder stärkere Beleuchtung verbessert werden kann. Darüber hinaus erzeugt der Prozess der Photonenkatalyse toxische Radikale, die nicht nur molekulare Prozesse zerstören und schließlich die Zellen töten, sondern auch die Fluoreszenzsonden selbst zerstören. Dies schränkt letztlich die Lichtmenge ein, die von den Sonden in den lebenden Zellen gesammelt werden kann und limitiert so die Auflösung.

Die Lösung ist im wahrsten Sinne des Wortes sehr cool

Jan Huebinger aus der Arbeitsgruppe um Philippe Bastiaens hat nun eine Technologie entwickelt, mit der molekulare Aktivitätsmuster während der Beobachtung ihrer Dynamik in lebenden Zellen zu jedem beliebigen Zeitpunkt innerhalb von Millisekunden direkt am Fluoreszenzmikroskop angehalten werden können. Auf diese Weise werden die beiden grundlegenden Probleme, Bewegungsunschärfe und Zerstörung der Fluoreszenzsonden, gleichzeitig umgangen.

Dies erfolgt durch extrem schnelles Abkühlen auf Temperaturen, die so kalt sind (-196°C), dass die Molekularbewegung praktisch zum Stillstand kommt. Diese Arretierung muss aus zwei Gründen sehr schnell erfolgen. Erstens zerfallen die energetisierten mikroskopischen Muster, die die lebenden Zellen definieren, in den toten Zustand, wenn die Arretierung zu langsam erfolgt. Zweitens muss das Erreichen des Stillstands schneller passieren als der Prozess der Eisbildung, der die Zellen zerstören würde. Diese Zerstörung kann in größerem Maßstab beobachtet werden, wenn z. B. eingefrorene Tomaten nach dem Auftauen sehr matschig werden. Eiskristalle entstehen sehr schnell im kritischen Bereich zwischen 0 und -136 °C. Bei sehr tiefen Temperaturen (unter -136 °C) hingegen, können sich keine Eiskristalle mehr bilden, weil die Bewegung der Wassermoleküle praktisch zum Stillstand kommt. Eisbildung lässt sich daher mit einer Abkühlung schneller als 100.000 °C pro Sekunde verhindern. Die Forscher haben diese technische Herausforderung gemeistert, indem sie eine in ein Mikroskop integrierte Hochgeschwindigkeitskühlvorrichtung entwickelt haben, bei der die Kälte von flüssigem Stickstoff (-196 °C) unter hohem Druck auf einen Diamanten beschleunigt wird. Dieser Diamant dient gleichzeitig als Probenträger für die Zellen. Der Hochdruckstoß in Kombination mit der außergewöhnlichen Wärmeleitfähigkeit des Diamanten ermöglichte es, die erforderlichen hohen Kühlraten zu erreichen, um die Zellen intakt zu arretieren. Dadurch wurde nicht nur das Problem der Bewegungsunschärfe gelöst, sondern auch die photochemische Zerstörung zum Erliegen gebracht. Dies eröffnete die Möglichkeit einer praktisch unendlichen Belichtungszeit, die molekulare Muster sichtbar macht, die ansonsten im Rauschen verdeckt sind.

Das Unsichtbare wird sichtbar

Kryo-Arretierung ermöglichte den Einsatz von normalerweise zerstörerisch hohen Laserleistungen zur Analyse ansonsten unsichtbarer nativer Molekularmuster mit einer Auflösung jenseits von 100 Nanometern. Da es bei -196 °C keine Photodestruktion gibt, können dieselben arretierten Zellen auch mit mehreren unterschiedlichen Mikroskopietechniken beobachtet werden, und so ineinandergreifende Muster abgebildet werden, die von der molekularen bis zur zellulären Skala reichen. Diese neue Technologie führte dadurch bereits zur Entdeckung der nanoskopischen Co-Organisation eines Onkoproteins und eines Tumorsuppressorproteins, die Zellen davon abhält bösartiges Krebsverhalten zu entwickeln.

"Dies ist ein wichtiger Schritt für die Fluoreszenzmikroskopie, insbesondere für die Kombination von Superauflösender Mikroskopie und Mikro-Spektroskopie, die die Abbildung molekularer Reaktionen in Zellen auf verschiedenen Ebenen ermöglicht. Dies wird die Art und Weise verändern, wie wir molekulare Organisation und Reaktionsmuster in Zellen beobachten und somit einen besseren Einblick in die Selbstorganisationsfähigkeiten der lebenden Materie ermöglichen", sagt Philippe Bastiaens.

Max-Planck-Institut für molekulare Physiologie

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Zellen
Mehr über MPI für molekulare Physiologie
  • News

    Struktur eines Schlüsselproteins für die Zellteilung gibt Rätsel auf

    An der menschlichen Zellteilung sind Hunderte von Proteinen beteiligt. Mit Kenntnis der 3D-Struktur dieser Proteine können wir verstehen, wie unser genetisches Material dupliziert und über Generationen hinweg weitergegeben wird. Die Gruppen um Andrea Musacchio und Stefan Raunser am Max-Plan ... mehr

    Was passiert in der lebenden Zelle?

    Die Plasmamembran ist eine Schaltstelle für Signalkaskaden, die wichtige Zellprozesse kontrollieren. Sie ist allerdings ein sehr fluides Medium, was die Erforschung solcher Vorgänge schwierig macht. Deutsche Wissenschaftler haben jetzt eine molekulare „Malpinsel”-Technik entwickelt, mit der ... mehr

    Warum ist Usain Bolt der schnellste Mensch der Welt?

    Bereits zwanzig Meter vor der Ziellinie breitet Usain Bolt jubelnd die Arme aus und drosselte damit sein Tempo: Mit angezogener Handbremse läuft er 2009 in Berlin mit 9,58 Sekunden schneller als ein Mensch zuvor. Er erreicht dabei eine Höchstgeschwindigkeit von fast 45 Kilometern pro Stunde ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Hohe harmonische Schwingungen beleuchten atomare und elektronische Bewegungen in hBN

    Laserlicht kann die Eigenschaften fester Materialien radikal verändern und sie sehr schnell supraleitend oder magnetisch machen oder in andere Zustände versetzen. Das intensive Licht bewirkt diese Veränderungen innerhalb von Millionstel Milliardstel Sekunden, indem es die Atomgitterstruktur ... mehr

    Markergene in Zellclustern finden

    Die abertausenden Zellen in einer biologischen Probe sind alle individuell unterschiedlich und lassen sich einzeln analysieren. Anhand der Gene, die in ihnen aktiv sind, lassen sie sich in „Cluster“ zusammen sortieren. Aber welche Gene sind besonders charakteristisch für Cluster, was sind a ... mehr

    Mikropartikel mit Gefühl

    Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen ... mehr