25.11.2020 - Technische Universität München

Fingerkuppen-Sensor mit Feingefühl

Ultradünner Sensor misst Druck beim Tasten

Wissenschaftler der Technischen Universität München (TUM) und der Universität Tokyo haben einen ultradünnen Mess-Sensor entwickelt, der wie eine zweite Haut auf der Fingerkuppe getragen werden kann. Dadurch bleibt der Tastsinn am Finger unbeeinträchtigt und das Feingefühl erhalten. Der Sensor kann so wertvolle Daten für die Entwicklung neuer Technologien liefern.

Unsere Hände und Finger sind ein wichtiges Werkzeug im täglichen Umgang mit Gegenständen, anderen Menschen und unserer unmittelbaren Umgebung. Herauszufinden, wie genau der Tastsinn funktioniert und diese Daten aufzeichnen zu können, sind für Forschungsgebiete in der Medizin, im Sport, in den Neurowissenschaften oder auch für das Erlernen von Fähigkeiten von großer Bedeutung, bei denen Feingefühl erforderlich ist.

Jedoch ist die Generierung solcher Daten nicht leicht: Die Fingerspitzen eines Menschen sind sehr sensibel und reagieren bereits auf die kleinste spürbare Wahrnehmung, was das Messergebnis beeinflussen könnte. Ein Fingerkuppen-Sensor muss daher einerseits extrem dünn und flexibel sein aber andererseits auch Reibung sowie anderen physischen Einflüssen standhalten.

Um dieses Problem zu lösen, hat sich ein Team um David Franklin, Professor für Neuromuskuläre Diagnostik an der TUM, mit der Universität Tokyo zusammengetan. Hier haben Wissenschaftler unter der Leitung von Prof. Takao Someya einen sogenannten Nanomesh-Sensor entwickelt. Er besteht aus vier ultradünnen, nanostrukturierten Schichten, die sich „perfekt für die Messung des menschlichen Tastsinns eignen“ sagt Franklin.

Dünner als menschliches Haar

Als Passivierungs- und Trägerschicht dient eine Lage aus Polyurethan-Nanofasern. Darauf folgt eine ultradünne Schicht aus Gold, eine Zwischenlage aus Parylen-umhüllten Polyurethan-Nanofasern und zuletzt wieder eine Goldschicht. Eine abschließende dünne Schicht aus Polyurethan- und Polyvinylalkohol-Nanofasern schützt die vier Lagen des Sensors mechanisch.

„Die Nanomesh Schichten werden im sogenannten Elektro-Spinning-Prozess hergestellt,“ sagt Someya. „Die Polyurethan-Nanofasern sind zwischen 200 und 400 Nanometer dünn, zweihundertmal dünner als ein menschliches Haar.“

Die Goldschichten sind eine Art Linien-Matrix, die den funktionellen elektronischen Bestandteil des Sensors bildet. Um sie herzustellen wurde Gold auf einer Trägerschicht aus Polyvinylalkohol aufgebracht, ein Kunststoff der auch für Kontaktlinsen verwendet wird. Dieser wird nach der Herstellung der Schicht ausgespült, sodass nur noch die Goldfasern erhalten bleiben.

Nicht spürbarer Reibungseffekt bei Messungen

Die Forscher führten eine Testreihe mit 18 Probanden durch. Alle Testpersonen gaben an, den Sensor nicht zu spüren. Ihre Fähigkeit, Gegenstände zu greifen, wurde nicht beeinträchtigt – wie es sich das die Forschungsgruppe erhofft hatte.

„In der Vergangenheit hatten wir nur vergleichsweise grobe und steife Messinstrumente, die das Gespür im Finger sehr beeinträchtigt haben“ sagt Franklin. „Denken Sie mal an ein Haustier daheim, etwa eine Katze oder einen Hund. Welches Messinstrument wäre feinfühlig genug, um den Druck zu messen, der beim Streicheln des Tieres ausgeübt wird? Das war vorher unmöglich. Doch jetzt, mit dem Nanomesh-Sensor am Finger, ist das tatsächlich machbar.“

Das Wissen des Handwerks archivieren

Ein Bereich, in dem der Sensor zum Einsatz kommen könnte, wäre die digitale Archivierung von Handwerk. „Nehmen wir das feinmotorische Talent eines Uhrmachers“ sagt Franklin. „Wie könnten wir die Art, wie er arbeitet, für die Nachwelt archivieren? Mit welchem Druck greift er die kleinen Einzelteilchen einer Uhr auf und wie bewegt er sie? Mit der Hilfe des Nanomesh-Sensors auf seinen Fingern könnte man sein Vorgehen genau dokumentieren.“

Tatsächlich handelt es sich um den weltweit ersten Finger-Sensor, der ohne den Verlust des menschlichen Feingefühls Messungen durchführen kann. Und trotz seiner dünnen Beschaffenheit ist der Sensor sehr stabil: Bei Abriebversuchen mit einem Druck von einem Kilogramm pro Quadratzentimeter, was in etwa dem Atmosphärendruck entspricht, gingen seine Fähigkeiten auch nach 300 Wiederholungen nicht verloren. „Das zeigt, dass wir die Manipulation jeglicher Art von Objekten messen können – das war vorher nicht möglich.“

Technische Universität München

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Drucksensoren
Mehr über TUM
  • News

    Fortschritte in der Mikro-Computertomographie

    Forschende der biomedizinischen Physik und der Biologie haben die Mikro-Computertomographie, speziell die Bildgebung mit Phasenkontrast und brillanter Röntgenstrahlung, deutlich verbessert. Dafür verwenden sie ein neu entwickeltes, mikrostrukturiertes, optisches Gitter in Kombination mit ne ... mehr

    Das Tetra-Neutron

    Während alle Atome außer Wasserstoff aus Protonen und Neutronen zusammengesetzt sind, sucht die Physik seit 50 Jahren nach einem Teilchen, das aus zwei, drei oder vier Neutronen besteht. Experimente eines Teams von Physikern der Technischen Universität München (TUM) am Beschleuniger-Labor a ... mehr

    Maschinelles Lernen enthüllt Taktiken des SARS-CoV-2-Virus

    Die Proteine des SARS-Cov-2-Virus spielen eine Schlüsselrolle bei der Fähigkeit des Virus, die menschliche Immunabwehr auszutricksen und sich in Patientenzellen zu vermehren. Ein internationales Forschungsteam unter Beteiligung der Technischen Universität München (TUM) hat nun den bislang u ... mehr

  • Stellenangebote

    CTA / Chemielaborant-/in (w/m/d) in der Forschung

    Wir suchen ab sofort eine/n CTA / Chemielaborant-/in (w/m/d) in der Forschung Ihre Aufgaben: Selbstständige, fach- und termingerechte Synthese etablierter und neuer Radiopharmaka, deren Reinigung mittels HPLC und Evaluierung in Zellkulturen Mitarbeit bei Entwicklung, Optimierung u ... mehr

Mehr über University of Tokyo
  • News

    Das Unsichtbare sichtbar machen

    Es gibt mehrere Möglichkeiten, zwei- und dreidimensionale Modelle von Atomen und Molekülen zu erstellen. Mit dem Aufkommen hochmoderner Geräte, die Proben auf atomarer Ebene abbilden können, stellten Wissenschaftler fest, dass die traditionellen Molekülmodelle nicht zu den Bildern passten, ... mehr

    Ein einziges Molekül sorgt für großen Wirbel beim Verständnis der beiden Arten von Wasser

    Es spielt eine grundlegende Rolle für die menschliche Existenz und ist ein wichtiger Bestandteil unseres Universums, doch es gibt immer noch Dinge, die wir über Wasser nicht verstehen. Um diese Wissenslücken zu schließen, hat ein Team des Institute of Industrial Science, der University of T ... mehr

    Herumgereichte Elektronen

    Durch Licht ausgelöste Ladungsübertragungen (Charge-Transfer) sind eine interessante elektronische Eigenschaft von Berliner Blau und einigen analog aufgebauten Verbindungen. Ein Forschungsteam konnte jetzt die ultraschnellen Prozesse bei der lichtinduzierten Ladungsübertragung zwischen Eise ... mehr