28.07.2020 - Max-Planck-Institut für molekulare Genetik

Brüche im Erbgut

Neues Verfahren soll die Diagnose von Erbkrankheiten verbessern

Brüche und Umlagerungen im Erbgut können zu schweren Erkrankungen führen, selbst wenn die Gene dabei intakt bleiben. Eine zuverlässige und genaue Diagnose solcher Defekte verspricht Hi-C, eine Methode zur Analyse der dreidimensionalen Struktur von Chromosomen, die derzeit in der Klinik noch nicht genutzt wird. Ein Forschungsteam um die Humangenetiker Malte Spielmann und Stefan Mundlos vom Max-Planck-Institut für molekulare Genetik und der Charité – Universitätsmedizin Berlin hat das Hi-C-Verfahren zur Untersuchung von Patienten mit genetischen Entwicklungsstörungen eingesetzt.

Schon die Veränderung eines einzigen Bausteins im Genom kann Krankheiten auslösen. Aber auch das Entfernen großer Abschnitte oder ihre Verschiebung an neue Positionen kann dramatische Folgen haben. Zellen mit solchen Defekten sind oftmals nicht überlebensfähig, weil durch den Verlust oder die Veränderung von Genen wichtige Funktionen nicht mehr wahrgenommen werden können.

Selbst wenn beim Bruch eines Chromosoms alle Gene intakt bleiben, können ernsthafte Probleme entstehen: Steuerelemente in der DNA können an die falsche Stelle gelangen und dort Gene zur falschen Zeit oder am falschen Ort aktivieren. Dies kann Krebs, neurodegenerativen Erkrankungen oder Entwicklungsstörungen verursachen.

Schlaufen im Erbgut

Trotz großer Fortschritte im Bereich der genetischen Diagnostik bleibt die Identifizierung der genetischen Ursachen erblicher Erkrankungen ausgesprochen schwierig. „In über der Hälfte der Fälle gelingt es trotz umfangreicher Analyse nicht, die ursächliche Mutation zu finden“, sagt Stefan Mundlos vom Max-Planck-Institut für molekulare Genetik und der Charité – Universitätsmedizin Berlin. „Selbst eine Sequenzierung des gesamten Genoms hilft den Betroffenen häufig nicht weiter.“

Wie das Team um die Humangenetiker Stefan Mundlos und Malte Spielmann schildert, könnte ein Verfahren aus der Grundlagenforschung die klinische Diagnostik künftig entscheidend verbessern. Die Forscher untersuchten eine Gruppe von Betroffenen, deren Erkrankungen vermutlich durch Umlagerungen im Erbgut verursacht worden waren. Sie nutzten dafür ein Verfahren namens „Hi-C“ (kurz für "high-throughput chromosome conformation capture": Konformationserfassung von Chromosomen im Hochdurchsatz), mit dem dargestellt werden kann, welche Abschnitte des Genoms sich im Zellkern in räumlicher Nähe zueinander befinden. Chromosomale Umlagerungen verändern diese räumliche Anordnung, dies wird in der Analyse sichtbar.

Das Team untersuchte Blut-, Haut- und Fruchtwasserproben von insgesamt neun Betroffenen, bei denen zwar Chromosomenbrüche nachgewiesen, aber kein bekanntes Gen verändert war. „Wir wollten wissen, ob wir mit Hi-C den klinischen Befund nachvollziehen oder die Diagnose sogar verbessern konnten“, sagt Malte Spielmann, der die Studie gemeinsam mit Mundlos leitete. „Tatsächlich war das Ergebnis viel komplexer als erwartet.“

Hi-C entwirrt geordnet verknäulte DNA

Die klassische Analyse von Chromosomendefekten erfolgt durch ein Karyogramm – dabei werden angefärbte Chromosomen durch ein Mikroskop betrachtet. Eine weitere Methode, die vergleichende Genomhybridisierung, arbeitet mit fluoreszenzmarkierten DNA-Abschnitten. Sie zeigt an, wo das Erbgut Lücken oder Dopplungen aufweist. Dennoch sind beide Verfahren verhältnismäßig ungenau. „Es ist nur erkennbar, dass etwas nicht stimmt. Worum es sich jedoch genau handelt, lässt sich schwer beurteilen“, sagt Uirá Souto Melo, der gemeinsam mit Rocio Acuna-Hidalgo und Robert Schöpflin Erstautor dieser Arbeit ist.

Es käme auch darauf an, welche Abschnitte des Erbgutfadens sich untereinander berühren, erklärt der Wissenschaftler: „Die DNA ist nicht einfach zufällig im Zellkern verteilt.“ Tatsächlich ist die DNA räumlich im Zellkern organisiert und weist abgegrenzte Segmente und mehrere räumliche Organisationsebenen auf. Bislang können nur mit dem Hi-C-Verfahren die Kontakthäufigkeiten des Erbgutfadens im dreidimensionalen Raum genomweit kartiert werden.

Schlaufen und Dreiecke

Melo untersuchte die Patientenzellen mithilfe der Hi-C-Methode. Zunächst wurde die DNA so behandelt, dass sich Segmente, die sich im Zellkern berühren, permanent aneinanderbanden. Anschließend wurde das Erbgut in kleine Stücke zerteilt und diese zum Schluss sequenziert. DNA-Abschnitte, die im Zellkern in räumlicher Nähe zueinander lagen, konnten so gemeinsam sequenziert werden.

Nach der bioinformatischen Auswertung wurde die Häufigkeit der Kontakte in einer sogenannten Heatmap dargestellt, in der die Farbintensität der einzelnen Punkte zeigt, wie häufig in der Probe ein Kontakt zwischen zwei DNA-Abschnitten beobachtet wurde. „Für Bereiche des Genoms, in denen besonders intensive Kontakte bestehen und die zu einem gewissen Grad von den benachbarten Regionen abgegrenzt sind, ergeben sich charakteristische dreieckige Formen in der Heatmap“, erklärt Bioinformatiker Robert Schöpflin. „Solche Regionen stellen eine Art große Schlaufen im Erbgut dar, in denen Steuerelemente und Gene gemeinsam organisiert sind." Die Regionen werden als "topologisch assoziierte Domänen" (TADs) bezeichnet; sie stellen Regionen mit hoher Interaktion im dreidimensionalen Raum dar.

Wichtige Grenzen

Wenn diese Schlaufenbildung durch einen Bruch im Erbgut gestört wird, können die Folgen gravierend sein. „Die Domänen verhalten sich wie ein Behälter mit gläsernen Kammern mit Öl, Wasser und Salz“, sagt Melo. „Nehme ich das Glas zwischen den Kammern heraus, vermischt sich der Inhalt und die Zusammensetzung verändert sich natürlich.“

In ähnlicher Weise kann sich die Reichweite von genetischen Steuerungsfaktoren verändern, wenn die Grenzen zwischen den TADs verschwinden. Ohne die limitierenden Grenzen können einzelne Faktoren Gene in einer DNA-Schlaufe steuern, für die sie gar nicht zuständig sind - und die Regulationsmechanismen in der Zelle brechen zusammen. „Wenn die Grenze zwischen zwei Domänen entfällt oder deren Inhalt vertauscht wird, kann ein Gen, das normalerweise für die Entwicklung der Gliedmaßen verantwortlich ist, zum Beispiel im Gehirn aktiviert werden und dort Fehlentwicklungen verursachen", sagt der Wissenschaftler.

In den jetzt untersuchten klinischen Proben konnte das Team nicht nur die bestehenden Befunde bestätigen und präzisieren, welchen Effekt falsch zusammengesetzte TAD-Genomschlaufen hatten. Die Forscher könnten darüber hinaus noch weitere Bruchstellen nachweisen, die mit den klassischen diagnostischen Methoden nicht sichtbar waren.

Der Weg in die Klinik

„Schon morgen Hi-C in der Klinik anzuwenden, wäre natürlich ein Traum“, sagt Melo. „Derzeit ist das aber leider noch nicht möglich.“ Noch wären die Kosten zu hoch und das Verfahren zu kompliziert, um Patienten routinemäßig mit diesem Verfahren zu testen. Das Team ist jedoch davon überzeugt, dass die noch jungen Methode viel Raum für Weiterentwicklungen bietet. So könnten Laborarbeit automatisiert und Algorithmen weiter verbessert werden und auch bei der Sequenzierung gäbe es Einsparpotenial, sagt der Forscher. „Wichtig ist nun, dass wir mit den Kolleginnen und Kollegen aus der Humangenetik und Medizin auf der ganzen Welt ins Gespräch kommen, um aus einer Labormethode ein echtes diagnostisches Verfahren entwickeln zu können.“

Max-Planck-Institut für molekulare Genetik

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Entwicklungsstörungen
  • Erbkrankheiten
  • Chromosomen
  • Sequenzierungen
  • Diagnostik
Mehr über MPI für molekulare Genetik
  • News

    Schweizer Taschenmesser für die Genomforschung

    Der Traum eines jeden Genetikers: Ein einfach zu bedienendes Programm, das Enhancer-Regionen identifiziert, sie unter verschiedenen Bedingungen in der Zelle vergleicht und ihren Genen zuordnet. Ein Forschungsteam um Professor Martin Vingron am Max-Planck-Institut für molekulare Genetik entw ... mehr

    Genom von Social-Media-Katze Lil BUB entschlüsselt

    Ihr Aussehen hat Lil BUB im Internet Millionen Follower beschert. Jetzt berichten zwei Molekularbiologen aus Deutschland und eine Molekularbiologin aus den USA, dass eine Kombination von zwei seltenen genetischen Veränderungen die einzigartige Erscheinung der berühmten Katze verursacht. Die ... mehr

    Neues Diagnose-Verfahren erkennt Erbkrankheiten

    Genetisch bedingte Krankheiten bedeuten für Betroffene oft eine Odyssee von Arzt zu Arzt. Weniger als die Hälfte der Patienten, bei denen der Verdacht auf eine genetische Krankheit besteht, erhalten bislang eine zufrieden stellende Diagnose. Wissenschaftler der Charité - Universitätsmedizin ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Die Gene hinter den Superkräften der Fledermäuse

    Fledermäuse können fliegen und sich mit Hilfe von Echoortung mühelos in völliger Dunkelheit orientieren; sie überleben tödliche Krankheiten und sind erstaunlich widerstandsfähig gegenüber dem Altern und Krebs. Forscher haben nun erstmals das Erbgut von Fledermäusen nahezu vollständig entsch ... mehr

    Zucker im Profil

    Auf Zucker öffnet sich eine neue Perspektive. Ein Team um Wissenschaftler der Max-Planck-Institute für Festkörperforschung sowie für Kolloid- und Grenzflächenforschung haben mit einem Rastertunnelmikroskop erstmals abgebildet, wie einzelne Moleküle von Mehrfachzuckern gefaltet sind. Damit s ... mehr

    Die Verwandtschaft der Proteine

    Proteine steuern als eines der wichtigsten Biomoleküle das Leben - als Enzyme, Rezeptoren, Signal- oder Strukturmoleküle. Forscher am Max-Planck-Institut für Biochemie haben zum ersten Mal die Proteome von 100 verschiedenen Organismen entschlüsselt. Die ausgewählten Organismen stammen a ... mehr