15.01.2020 - Max-Planck-Institut für biophysikalische Chemie

MINFLUX-Nanoskopie sieht Zellen molekular scharf

Fluoreszenzmikroskopie mit molekularer Trennschärfe nun auch für die Lebenswissenschaften

Vor drei Jahren stellten der Göttinger Nobelpreisträger Stefan Hell und sein Team die MINFLUX-Nanoskopie vor. Mit ihr war es erstmals möglich, fluoreszierende Moleküle mit Licht getrennt sichtbar zu machen, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind – die Technik ist also hundertmal schärfer als die herkömmliche Lichtmikroskopie. Schärfer geht es nicht. Jetzt haben die Max-Planck-Forscher eine neue Entwicklungsstufe dieser Technik präsentiert: MINFLUX erreicht diese Auflösung nun auch in Zellen, und das mehrfarbig und in 3D. Damit lässt sich die MINFLUX-Nanoskopie auf vielfältige biologische Fragestellungen anwenden.

Es war ein großes Versprechen für die biologische Forschung, das Hell gab, als er und sein Team im Jahr 2016 MINFLUX vorgestellt hatten: Er sei davon überzeugt, dass die Methode das Zeug dazu habe, eines der mächtigsten Werkzeuge der Zellbiologie zu werden, sagte der Physiker vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie damals. „Mit diesem Verfahren wird es möglich sein, Zellen molekular zu kartografieren.“

Für MINFLUX hatte Hell die Stärken der beiden bis dato hochauflösendsten Fluoreszenz-Nanoskopie-Techniken zusammengeführt: PALM/STORM und die von ihm selbst entwickelte STED-Mikroskopie, für die er 2014 den Nobelpreis für Chemie erhalten hatte. MINFLUX erreichte erstmals eine Trennschärfe von wenigen Nanometern und war auch bis zu hundertmal schneller im Verfolgen sich in der Zelle bewegender Moleküle. Allerdings war MINFLUX damals nur für künstliche Testobjekte gezeigt worden und noch nicht für die Untersuchung von (lebenden) Zellen einsetzbar.

Die aktuelle Veröffentlichung mit den Erstautoren Klaus Gwosch, Jasmin Pape und Francisco Balzarotti löst nun dieses Versprechen ein und zeigt das ganze Potential der Methode. „Wir haben MINFLUX so weit entwickelt, dass wir fluoreszierende Moleküle in Zellen mit maximaler, molekularer Auflösung, in zwei Farben und dreidimensional sichtbar machen können“, fasst Jasmin Pape zusammen. „Damit erfüllt MINFLUX bereits heute viele Anforderungen, um Moleküle und Prozesse in lebenden Zellen molekular scharf abzubilden und zu untersuchen.“

MINFLUX nutzt einen Donut-förmigen Laserstrahl mit einer Intensitäts-Nullstelle in der Mitte, um einzelne fluoreszierende Moleküle zum Leuchten zu bringen. Aus der Stärke der Fluoreszenz lässt sich die ungefähre Position des Moleküls relativ zur Donutmitte bestimmen. Anschließend bewegt das Mikroskop den Donut so, dass sich die Intensitäts-Nullstelle näher am Molekül befindet. Weil die Position der Nullstelle bekannt ist, ist somit auch die Molekülposition genauer bestimmt – und das mit vergleichsweise wenigen Fluoreszenzphotonen. Die Wissenschaftler optimierten diesen Prozess, bis er auf ein bis drei Nanometer exakte Ergebnisse lieferte. MINFLUX ist nun auch für größere Proben einsetzbar, wie sie typischerweise unter dem Mikroskop von Biologen liegen, wenn sie lebende Zellen analysieren.

Außerdem nutzt MINFLUX jetzt eine dreidimensionale Donut-Intensitäts-Nullstelle, um Molekülverteilungen auch in allen Raumrichtungen – also in 3D – molekular aufzulösen. Mit dem neuesten Versuchsaufbau können die Forscher noch dazu die Verteilung zweier unterschiedlich markierter Molekülarten zeitgleich beobachten.

„MINFLUX ist nun bereit für zellbiologische Fragestellungen. Trotz der neuen, fundamentalen Weiterentwicklung besteht immer noch Potenzial, um MINFLUX weiter zu verbessern: Sowohl die Aufnahmezeit als auch störende Hintergrundsignale lassen sich in Zukunft weiter reduzieren, was die Methode noch weiter verbessern wird. Es wird kräftig weitergehen“, so die Max-Planck-Forscher.

Max-Planck-Institut für biophysikalische Chemie

Jetzt Infos anfordern

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • 3D-Mikroskopie
Mehr über MPI für biophysikalische Chemie
  • News

    Auflösungsweltrekord in der Kryo-Elektronenmikroskopie

    Eine entscheidende Auflösungsgrenze in der Kryo-Elektronenmikroskopie ist geknackt. Holger Stark und sein Team am Max-Planck-Institut (MPI) für biophysikalische Chemie haben zum ersten Mal einzelne Atome in einer Proteinstruktur beobachtet und die bisher schärfsten Bilder mit dieser Methode ... mehr

    Proteine ganz nah

    Die von Nobelpreisträger Stefan Hell und seinem Team entwickelte MINFLUX-Nanoskopie ermöglicht, fluoreszierende Moleküle mit Licht getrennt abzubilden, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind. Diese Technik ist damit hundertmal schärfer als die herkömml ... mehr

    Virenvermehrung in 3D

    Vaccinia-Viren dienen als Impfstoff gegen menschliche Pockenerkrankungen und als Basis neuer Krebstherapien. Zwei Studien liefern jetzt faszinierende Einblicke in deren ungewöhnliche Vermehrungsstrategie auf atomarer Ebene. Damit Viren sich vermehren können, benötigen sie in der Regel die ... mehr

Mehr über Max-Planck-Gesellschaft
  • News

    Gold-Nanopartikel für hochaufgelöste Biomoleküle

    Ein internationales Forschungsteam unter der Leitung von Kartik Ayyer am MPSD hat 3D-Bilder von Gold-Nanopartikeln in ultrapräzisem Detail generiert. Die Ergebnisse sind ein wichtiger Schritt in der Suche nach hochauflösenden Abbildungsmethoden für Makromoleküle. Die Studie wurde am Single ... mehr

    Der fehlende Schritt bei der Wassererwärmung: Erst beugen und dann drehen

    Das Wasser auf der Erde macht unseren Planeten bewohnbar. Dieses speichert die Energie der Sonne und gibt sie in Form von Wärme ab. Eine internationale Forschungskollaboration unter Leitung des Max-Planck-Instituts für Polymerforschung hat nun gezeigt, dass wie und wie schnell die in den Mo ... mehr

    Atomweise Analyse von gefrorenem Wasser

    Wie kann man Eis bis auf die atomare Ebene analysieren? Und wie kann man in Eis eingebettete Objekte analysieren, ohne es zu schmelzen? Ein internationales Team von Materialwissenschaftlern, hauptsächlich vom Max-Planck-Institut für Eisenforschung (MPIE), hat einen Weg gefunden, mikrometerd ... mehr