Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

19.11.2019

ETH Zürich / Joachim Schnabl

(R)-2-Iodbutan

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-​Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische physikalische Eigenschaften haben, sind sie dennoch nicht gleich. Die Tatsache, dass sie sich zueinander wie Bild und Spiegelbild verhalten, nennt man Chiralität (vom griechischen Cheiro für Hand). In der Natur kommt jedoch oft nur ein Enantiomer vor, zum Beispiel bei Aminosäuren, der DNA oder bei Zuckern. Der Grund dafür ist, dass die Enzyme die diese Moleküle herstellen, selbst chiral sind und nur eine Art von Enantiomer bilden.

Diese Präferenz der Natur hat weitreichende Folgen. So können Enantiomere von Medikamenten völlig verschiedene Wirkungen haben, zum Beispiel giftig sein oder auch komplett wirkungslos. Auch die Lebensmittel-​ und Kosmetikindustrie interessiert sich für Chiralität, weil Duft-​ und Geschmacksstoffe je nach Enantiomer unterschiedlich wahrgenommen werden. In der Chemie wird deshalb oft versucht, gezielt nur ein Enantiomer herzustellen, oder wenn das nicht möglich ist, Mischungen von Enantiomeren sauber zu trennen.

Um Enantiomere voneinander unterscheiden zu können, verwenden Chemiker polarisiertes Licht, denn die Enantiomere drehen die Schwingungsebene von polarisiertem Licht in entgegengesetzte Richtungen. Das Brechen oder Bilden von chemischen Bindungen läuft allerdings auf einer sehr kurzen Zeitskala ab, nämlich innerhalb von wenigen Femtosekunden (Billiardstelsekunden). Mit den bisherigen Messungen war es nicht möglich, die Chiralität in dermassen kurzen Zeiträumen zu überwachen und damit einen chemischen Prozess zu verfolgen.

Reaktionen chiraler Moleküle besser verstehen

Forscher um Hans Jakob Wörner, Professor am Departement Chemie und Angewandte Biowissenschaften, haben nun eine neue Methode entwickelt, um Änderungen in der Chiralität direkt während einer chemischen Reaktion in Echtzeit zu beobachten. Dazu haben die Forscher Femtosekunden-​Laserpulse mit massgeschneiderter zeitlich variierender Polarisation erzeugt. Diese ultrakurzen Laserpulse sind selbst chiral. Durch diesen neuen Ansatz erreichten die Wissenschaftler erstmals gleichzeitig die für solche Messungen nötige Chiralitätsempfindlichkeit und Zeitauflösung.

In ihrem Experiment, über das die Wissenschaftler in der Fachzeitschrift PNAS berichten, regten sie das gasförmige chirale Molekül (R)‑2‑Iodobutan mit zwei ultrakurzen Ultraviolett‑Laserimpulsen an. Die Anregung führte dazu, dass die Bindung zwischen Kohlenstoff und Iod brach. In diesem Prozess entsteht ein 2-​Butylradikal zunächst in einer chiralen Konformation, die jedoch ihre Chiralität sehr schnell verliert. Mithilfe der neu entwickelten polarisierten Laserimpulse konnten die Forscher dies live mitverfolgen.

Diese neue Methode kann auch für Flüssigkeiten oder Feststoffe angewendet werden, um die extrem schnellen Änderungen molekularer Chiralität zu beobachten, wie die Wissenschaftler sagen. Die Möglichkeit, die chirale photochemischen Prozesse auf solch kurzen Zeitskalen direkt zugänglich zu machen, erlaube es nun, die Reaktionen von chiralen Molekülen besser zu verstehen. Dies könnte zur Entwicklung neuer oder verbesserter Verfahren für die Herstellung enantiomerenreiner Verbindungen beitragen.

Eidgenössische Technische Hochschule Zürich (ETH Zürich)

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Chiralität
  • Echtzeit-Beobachtungen
  • chemische Reaktionen
  • Enantiomere
Mehr über ETH Zürich
  • News

    Magnesiumlegierungen beim Korrodieren zusehen

    Erstmals konnten ETH-​Forscher die Korrosion von Magnesiumlegierungen für biomedizinische Anwendungen auf der Nanoskala beobachten. Dies ist ein wichtiger Schritt, um bessere Vorhersagen darüber zu treffen, wie schnell Implantate im Körper abgebaut werden und so massgeschneiderte Implantatw ... mehr

    Mini-Spektrometer: Kleiner als eine Münze

    ETH-Forscher haben ein kompaktes Infrarot-Spektrometer entwickelt, das sich auf einem kleinen Chip unterbringen lässt. Damit ergeben sich interessante Perspektiven – im Weltall und im Alltag. Ein Handy kann heute alle möglichen Aufgaben erledigen: Fotos und Videos aufnehmen, Nachrichten ver ... mehr

    Gesunde Organellen, gesunde Zellen

    Seit Kurzem ist bekannt, wie wichtig membranlose Organellen für Zellen sind. Nun haben Biochemiker der ETH Zürich einen neuen Mechanismus entdeckt, der die Bildung solcher Organellen reguliert. Damit haben sie die Voraussetzung geschaffen, um Erkrankungen wie Alzheimer oder ALS zielgerichte ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.