Non-coding RNA reveals its secrets

16-Apr-2018

Artwork by Maximilian Heumüller.

Fluorescence in situ hybridization against the unique sequence of the long 3’ untranslated region of Camk2a in a hippocampal neuron. Neurons localize mRNAs near synapses where their translation can be regulated by synaptic demand and activity. Tushev, Glock et al. discover a huge diversity in neuronal mRNA 3’UTRs, which give rise to differences in localization, stability, translation, and plasticity.

Scientists from the Schuman Lab at the Max Planck Institute for Brain Research have investigated the variety of structures and functions in non-coding parts of messenger RNA (mRNA) from brain cells. These untranslated regions (UTRs) are essential for regulating the stability and localization of mRNAs, as well as its translation into proteins.

Our brain’s capacity to learn and to form memories relies on the ability to respond adaptively to environmental inputs. The integration of these inputs occurs at synapses, the connections between brain cells. Unlike other cell types in the body, neurons have an elaborate architecture, consisting of axons to transmit and dendrites to receive information. Like all cells, neurons use proteins to carry out their important cellular functions. Neurons supply their processes with proteins by moving mRNA molecules to the dendrites and axons where they can be locally translated.

A mRNA molecule consists of a coding sequence in the middle, which serves as a template for new proteins, and two non-coding regions located on both ends: the 3’ region on the right and 5’ on the left hand side. These so-called untranslated regions (UTRs) control gene expression at the RNA level and are variable in length and composition. By acting as binding platforms, they can regulate stability, trafficking and translation, thus dictating the fate of an mRNA molecule within a cell.

Researchers from the Schuman Lab now sequenced the mRNA present in different regions of rat hippocampal slices and took a closer look at the 3’ UTR region. Schuman: “When we examined mRNA in both neuronal cell bodies and in the neuropil, primarily consisting of axons and dendrites, we noticed a huge diversity in the 3’UTRs of neuronal mRNAs with many transcripts showing enrichment for a particular 3’UTR isoform in a cellular compartment. In addition, the isoforms enriched in the neuropil proved to be more stable than those located in the cell body.” The scientists were even able to follow the dynamics of these molecules during a period of enhanced neural activity and observed an alteration of 3’UTR isoforms present in each compartment. The Schuman team speculates that some of the changes in the dendritic compartment might be due to local remodeling of 3’UTRs.

Facts, background information, dossiers
  • RNA
  • messenger RNA
  • brain cells
  • brain
  • neurons
  • proteins
  • axons
  • synapses
  • gene expression
  • dendrites
  • non-coding RNA
More about MPI für Hirnforschung
  • News

    Tracing cerebral cortex evolution, cell by cell

    Our cerebral cortex, a sheet of neurons, connections and circuits, comprises “ancient” regions such as the hippocampus and “new” areas such as the six-layered “neocortex”, found only in mammals and most prominently in humans. But when in evolution did the components of cerebral cortex arise ... more

    Of men and mice

    The human neocortex mediates many of the capacities that distinguish us from our closest relatives such as conscious thought and language. It is therefore striking that our understanding of this brain area is still overwhelmingly based on studies with animal models. A team of scientists led ... more

    10-fold speed up for the reconstruction of neuronal networks

    Scientists working in „connectomics“, a research field occupied with the reconstruction of neuronal networks in the brain, are aiming at completely mapping of the millions or billions of neurons found in mammalian brains. In spite of impressive advances in electron microscopy, the key bottl ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE