Schritt für Schritt verfolgt: ATP-Spaltung in Membranprotein erstmals dynamisch gemessen

10.07.2012

© Falk Syberg

ATP-Spaltung: Das Transportprotein MsbA (grau) spaltet ATP (bunt), um Energie für den Transportprozess zu gewinnen. ATP besitzt drei Phosphatgruppen (orange-rot). Wird eine davon abgespalten (gelb), wird Energie frei. Den Spaltprozess kann man im Infrarot-Spektrum verfolgen (oben), in dem die verschiedenen ATP-Zwischenprodukte charakteristische Banden hinterlassen (rot: ATP, gelb: abgespaltenes Phosphat, weiß: Protein).

Wie ein Transportprotein aus dem Energiespeichermolekül ATP seine Antriebskraft gewinnt, haben RUB-Forscher dynamisch verfolgt. Mit der zeitaufgelösten Infrarotspektroskopie beobachteten sie die strukturellen Veränderungen in dem bakteriellen Membranprotein MsbA und seinem Interaktionspartner ATP. Über die Ergebnisse berichten die Forscher um Prof. Dr. Eckhard Hofmann und Prof. Dr. Klaus Gerwert vom Lehrstuhl Biophysik in der aktuellen Ausgabe des Journal of Biological Chemistry.

Transportproteine sind mit verschiedenen Krankheiten assoziiert

ABC-Transporter sind Membranproteine, die verschiedene Substanzen von einer Seite der Zellmembran auf die andere befördern. Die Antriebskraft dafür liefert das Molekül ATP, ein universeller Energiespeicher der Zellen. ATP besitzt drei Phosphatgruppen; wird eine davon abgespalten, wird Energie frei. Die Transporter sind medizinisch relevant, da sie bei der Multiresistenz von Krebszellen gegen Chemotherapeutika eine zentrale Rolle spielen und mit verschiedenen Erbkrankheiten wie Mukoviszidose zusammenhängen. In den letzten Jahren haben Forscher die 3D-Strukturen von mehreren dieser Transporter auf atomarer Ebene aufgeklärt. Obwohl die Architektur der Nanomaschinen bekannt ist, fehlt bisher das detaillierte Verständnis darüber, wie die Spaltung des Energieträgers ATP dynamisch den Transport von verschiedenen Substanzen über biologische Membranen ermöglicht.

Protein steuert ATP-Spaltung

In dem Fetttransporter MsbA aus dem Bakterium Escherichia coli verfolgten die Bochumer Forscher nun erstmals dynamisch die ATP-Spaltung, Hydrolyse genannt. Mit der Fourier-Transform-Infrarotspektroskopie untersuchten sie die Motordomäne von MsbA, also den Teil des Proteins, an dem sich die ATP-Spaltung vollzieht. Mit der Methode können Forscher kleinste Veränderungen im Protein im Bereich von Nanosekunden verfolgen. Gleichzeitig erfasst das Verfahren aber auch Veränderungen in den Molekülen, mit denen das Protein interagiert – in diesem Fall ATP.

Phosphatsignale verraten, was bei der Spaltung vor sich geht

Die große Herausforderung bei der Datenanalyse ist es, die Signale im gemessenen Spektrum bestimmten Molekülen bzw. Molekülgruppen zuzuordnen. Gelingt das, kann man erkennen, welche Molekülgruppen sich zu welchem Zeitpunkt strukturell verändern. Die Biophysiker markierten die Phosphatgruppen des ATP-Moleküls, so dass sie charakteristische Signale im Spektrum hinterließen. Auf diese Weise verfolgten sie, wie ATP an das Transportprotein band, eine seiner drei Phosphatgruppen abgespalten und in die Umgebung abgegeben wurde, ohne sich zuvor noch einmal an das Protein anzuheften. „Unsere Daten liefern auch wichtige Hinweise dafür, wie sich das Protein während der ATP-Hydrolyse bewegt. Das legt den Grundstein für die Untersuchung des gesamten Membranproteins, die wir als nächstes in Angriff nehmen“, so Prof. Hofmann. Gefördert wurden die Untersuchungen vom Protein Research Department der RUB und aus Mitteln des SFB 642 „GTP- und ATP-abhängige Membranprozesse“, deren Sprecher Prof. Gerwert ist.

Fakten, Hintergründe, Dossiers
Mehr über Ruhr-Universität Bochum
  • News

    Optimal düngen dank Sensor und Cloud

    Größere Ernten, bessere Qualität, geringere Kosten und Umweltschutz: Das alles verspricht ein Nitratbiosensor, den Forscher an der Ruhr-Universität Bochum entwickelt haben. Der Sensor, den Landwirte direkt auf dem Feld selbst nutzen können, soll jetzt in Serie gehen: Prof. Dr. Nicolas Plume ... mehr

    Mikroskopie: Auflösung von 30 Nanometern erreicht

    Objekte, die kleiner sind als die halbe Wellenlänge des genutzten Lichts, lassen sich mit der herkömmlichen Lichtmikrospie nicht betrachten. Ein Forscherteam der Ruhr-Universität Bochum (RUB) und der Universität Basel hat es nun geschafft, die Auflösung für die mikroskopische Untersuchung v ... mehr

    Die Stabilität komplexer Legierungen schneller bestimmen

    Ob ein neuer Werkstoff unter Temperaturbelastungen stabil bleibt, können Materialwissenschaftler der Ruhr-Universität Bochum innerhalb weniger Tage ermitteln. Sie entwickelten ein neues Verfahren, mit dem sich komplexe Legierungen, die aus vielen verschiedenen Elementen bestehen, zum Beispi ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.