Microwave microscopy of ferroelectric domains
Research led by Oak Ridge National Laboratory explored building blocks of future electronics — ferroelectric materials in which topological defects called domain walls can be created by an electric field and detected by an alternating current. The study led by Alexander Tselev, Sergei Kalinin and Petro Maksymovych of the Center for Nanophase Materials Sciences, a DOE Office of Science User Facility at ORNL, found that domain walls in two ferroelectric oxides were great electrical conductors at microwave frequencies, despite being insulators for direct current. In fact, their alternating current conductivity rivaled that of doped silicon. “These findings motivate the potential for alternating current conduction for oxide electronics and other materials with poor direct current conductivity, particularly at the nanoscale,” noted Maksymovych.

Microwave imaging (left) reveals conducting ferroelectric domain walls (right) in lead zirconate titanate. Before microwave microscopy, it was difficult to detect electrically conducting ferroelectric domains. Measurements also suggest the “rough” shape of these walls, indicated with dotted lines in the inset (far right), enables the alternating current conductivity.
ORNL
Original publication
Most read news
Original publication
Alexander Tselev, Pu Yu, Ye Cao, Liv R. Dedon, Lane W. Martin, Sergei V. Kalinin & Petro Maksymovych; "Microwave a.c. conductivity of domain walls in ferroelectric thin films"; Nature Comm.; 2016
Topics
Organizations
Other news from the department science

Get the analytics and lab tech industry in your inbox
From now on, don't miss a thing: Our newsletter for analytics and lab technology brings you up to date every Tuesday. The latest industry news, product highlights and innovations - compact and easy to understand in your inbox. Researched by us so you don't have to.