31-Jan-2011 - Max-Planck-Institut für Kernphysik

Neutrino detector starts measurement

New facility in France to measure fundamental properties of neutrinos

The Double Chooz collaboration recently completed its neutrino detector which will see anti-neutrinos coming from the Chooz nuclear power plant in the French Ardennes. The experiment is now ready to start collecting data in order to measure fundamental neutrino properties with important consequences for particle and astro-particle physics.

Neutrinos are electrically neutral elementary particles, three of a kind plus their antiparticles. Though already postulated in 1930 their first experimental observation was made in 1956. Because of their weak interaction with other particles, matter is almost completely transparent to neutrinos and large sensitive detectors are needed to capture them.

Neutrino oscillations were a major discovery in the late 1990s with the corresponding experiments being included in the 2002 Nobel Prize. Oscillations describe in-flight transformations of different neutrino species into each other and the observation of this effect implies that neutrinos do have mass. The oscillations depend on three mixing parameters, of which two are large and have already been measured. The third one is called theta13 and is known to be smaller with an upper limit coming from a previous experiment at Chooz. The new Double Chooz detector is the first of a new generation of reactor neutrino experiments with the aim of measuring this fundamental parameter in neutrino physics which is a key area of particle physics research. The results will also have important consequences for the feasibility of future neutrino facilities which will aim for even more precise measurements.

Double Chooz consists of two identical detectors. The first one, at a distance of about 1km from the reactor cores, has now been filled and started to collect data. The number of neutrinos measured compared to the expected flux from the reactors will allow considerably improvement in the sensitivity for theta13 already in 2011. The second detector, located at a distance of 400 metres, will start operating in 2012. At this distance no significant transformation into another neutrino species is expected. By comparing the results from both detectors, theta13 can be determined with even higher precision.

Both detectors use an organic liquid scintillator, which was developed specifically for this experiment. The neutrino target in the core of the detector consists of 10 cubic metres of Gadolinium doped scintillator which can be used to tag neutrons from inverse beta decays which are induced by anti-neutrinos emitted by the reactors. The target is surrounded by three layers of other liquids in order to protect against other particles and to dampen environmental radioactivity. These liquids are contained in very thin vessels so as to minimize inactive volumes inside the detector. The target is observed by 390 immersed photomultipliers which convert the interactions into electrical signals. These signals are processed in a data acquisition system which can collect data over the next five years. The new detectors will ensure that neutrino physics will stay one the most fruitful areas of particle physics, as it has been for the past 50 years.

An essential contribution to the project was the development of the gadolinium-doped liquid scintillator by the researchers at the Max Planck Institute for Nuclear Physics in Heidelberg. Their task was to find, test, produce and purify a gadolinium compound which is solvable in an organic liquid and chemically stable for many years. In collaboration with their colleagues from Japan they checked the photomultipliers in a specially built test-bed. These central contributions will also play a crucial role for the interpretation and data analysis. Universities and research institutes from Brazil, England, France, Germany, Japan, Russia, Spain and USA comprise the Double Chooz collaboration.

More about MPI für Kernphysik
  • News

    Mass of the deuteron corrected

    High-precision measurements of the mass of the deuteron, the nucleus of heavy hydrogen, provide new insights into the reliability of fundamental quantities in atomic and nuclear physics. This is reported in the journal "Nature" by a collaboration led by the Max Planck Institute for Nuclear ... more

    Weighing an ant on top of an elephant: Quantum jump tipping the balance

    A new door to the quantum world: when an atom absorbs or releases energy via the quantum jump of an electron, it becomes heavier or lighter, according to Einstein’s theory of relativity (E = mc²). However, the effect is minuscule for a single atom. Nevertheless, the team of Klaus Blaum and ... more

    Quantum logic spectroscopy unlocks potential of highly charged ions

    Scientists from the Physikalisch-Technische Bundesanstalt (PTB) and the Max Planck Institute for Nuclear Physics (MPIK) have carried out pioneering optical measurements of highly charged ions with unprecedented precision. To do this, they isolated a single Ar¹³⁺ ion from an extremely hot pl ... more

More about Max-Planck-Gesellschaft
  • News

    MaxDIA – taking proteomics to the next level

    Proteomics produces enormous amounts of data, which can be very complex to analyze and interpret. The free software platform MaxQuant has proven to be invaluable for data analysis of shotgun proteomics over the past decade. Now, Jürgen Cox, group leader at the Max Planck Institute of Bioche ... more

    How ethane-consuming archaea pick up their favorite dish

    Hot vents in the deep sea are home to microbes that feed on ethane. They were discovered recently from scientists of the Max Planck Institute for Marine Microbiology. Now the researchers from Bremen succeeded in finding an important component in the microbial conversion of the gas. They wer ... more

    How a corona infection changes blood cells in the long run

    Using real-time deformability cytometry, researchers at the Max-Planck-Zentrum für Physik und Medizin in Erlangen were able to show for the first time: Covid-19 significantly changes the size and stiffness of red and white blood cells - sometimes over months. These results may help to expla ... more