A collaboration of scientists from various Beijing institutes, have made a pH-switchable, DNA-quantum dot hybrid that can also generate a photocurrent depending on the pH, allowing DNA to change conformation from a quadruplex to a double strand. Zhiyong Tang, Dongsheng Liu and colleagues f ... more
Tears instead of Blood
Sensor with separation capability: diagnosing jaundice using tear fluids
Human tear fluids contain many proteins, metabolites, and other molecules whose concentrations change significantly with certain diseases. A research team has now developed a handy test kit for tears that can identify patients with jaundice. Their success is based on a hybrid sensor that simultaneously removes impurities from the sample. This approach could provide new methods for early detection and diagnosis based on complex bodily fluids, as the team reported in the journal Angewandte Chemie.
One particular advantage of tear fluid diagnosis is that samples can be collected in a comfortable and non-invasive manner. A method called surface-enhanced Raman spectroscopy (SERS) is a suitable candidate for the analysis of the biomolecules obtained. The Raman effect is a phenomenon in which light striking materials causes characteristic vibrations and rotations of molecular fragments. The resulting shift in the frequency of the scattered light gives a molecular “fingerprint”. If the analyte molecules are in contact with a metal surface (hotspots), the Raman signals are amplified enough to reach the ultra-sensitivity required for tear diagnostics. Labeling the analytes is unnecessary. Compact Raman hand devices would be available for direct diagnosis in the field. The problem is in finding suitable SERS sensors. Current sensors are quickly deactivated by deposition of tear components. Is there a way to make this work without complex sample preparation?
In fact, there is. A team led by Yun Feng (Peking University Third Hospital), Zhou Yang (University of Science and Technology Beijing), and Tie Wang (Tianjin University of Technology and Chinese Academy of Sciences Beijing), has demonstrated this with their novel matchbox-sized diagnostic test kit. At its heart lies a hybrid film. A layer of symmetrically arranged silicon dioxide nanospheres is coated with a whisper-thin layer of gold, onto which is deposited a layer of gold nanoparticles that act as SERS hotspots. The target molecules bind to the gold and are held fast to the surface, while smaller tear components slip through the gaps between the silicon dioxide nanoparticles onto an absorbent layer below. The pore diameters can be adjusted by changing the size of the nanospheres to selectively separate out the disruptive primary components of tears (albumin, lysozyme, IgG, and peroxidase). The film, called SiO2@Au@AuNPs, is sandwiched between two glass supports and enclosed in a housing. A tip protrudes from the device to collect tear fluid from the corner of the eye. The SERS analysis occurs through a window on top of the device.
The team was able to successfully identify patients with jaundice—a metabolic disorder associated with liver and gall bladder diseases. The bile pigment bilirubin is not properly excreted from the body, becomes concentrated, and can be found in tear fluid. Bilirubin binds strongly to the sensor’s gold and can be detected with great sensitivity by its SERS signal.
-
News
Tracking the Happiness Hormone
Dysregulation of serotonin plays a role in many psychiatric disorders, including severe depression and anxiety. In the journal Angewandte Chemie, a research team has now introduced an implantable, electrochemical microsensor that makes it possible to study serotonin dynamics in the brain in ... more
Hydrogen peroxide as a target in the fight against cancer?
Reactive oxygen species (ROS) are reputed for their involvement in carcinogenesis. Results from a study published in the journal Angewandte Chemie have now shown that the level of one such ROS, hydrogen peroxide, is significantly higher in pancreatic cancer cells, unlike the level of other ... more
The quantitative detection of specific antibodies in complex samples such as blood can inform on many different diseases but usually requires a complicated laboratory procedure. A new method for the rapid, inexpensive, yet quantitative and specific point-of-care detection of antibodies has ... more
- 1Fingerprint breakthrough in breast cancer detection
- 2New method for the detection of RNA viruses such as SARS-CoV-2
- 3Waters acquires Wyatt Technology for $1.36 billion
- 4New organ-on-chip pilot seeks to reduce animal testing in consumer health industry
- 5How nanoplastics can influence metabolism
- 6Self-driven laboratory speeds chemical discovery
- 7Capturing nanoplastics in tap water with light
- 8Next generation solar fuels: How a record-breaking copper catalyst converts CO₂ into liquid fuels
- 9New analysis method developed for nano and quantum materials
- 10A further advance in super-resolution fluorescence microscopy
- Beethoven’s genome: New study reveals hereditary diseases and a family mystery
- Single-atom vibrational spectroscopy now sensitive at level of chemical bonds
- In search of the 'holy grail': researchers observe lithium ions in real time
- Klara – A transparent fish for research on aging
- A breakthrough in big data processing helps trace chemicals in complex mixtures
- Single-atom vibrational spectroscopy now sensitive at level of chemical bonds
- In search of the 'holy grail': researchers observe lithium ions in real time
- Tracking the Happiness Hormone
- Eppendorf: New production site in Shanghai metropolitan region
- A mobile breakthrough for water environment monitoring