10-Jan-2022 - University of Tokyo

A single molecule makes a big splash in the understanding of the two types of water

“Because water plays such an important role in chemistry and biology, and even in understanding our universe, we expect our findings to have a wide-ranging impact”

It plays a fundamental role in human existence and is a major component of our universe, yet there are still things we don’t understand about water. To address the knowledge gaps, a collaborative team of Institute of Industrial Science, The University of Tokyo, Kyoto University, and Tohoku University investigated electron transport through a single water molecule in a C60 cage. Their findings are published in Nano Letters.

Simple systems are often the best starting point for determining complex information. A single water molecule is one such system. Made up of just three atoms, it provides an excellent model for establishing quantum mechanical information.

Introducing a water molecule into a C60 cage—a soccer ball-shaped molecule made entirely of carbon atoms—gives H2O@C60 and is an excellent way of isolating water for investigation. The researchers achieved this using “molecular surgery”, which involves opening the cage, injecting water, and closing the cage again.

H2O@C60 was then used as a single molecule transistor (SMT) by mounting one H2O@C60 molecule in the very small gap—less than 1 nm—between two gold electrodes. Because the electric current then passes through the isolated molecule only, the electron transport can be studied with high specificity.

A conductance map, also known as a “Coulomb stability diagram”, was generated for the H2O@C60 SMT. It showed multiple tunneling-induced excited states for the water molecule. In contrast, the Coulomb stability diagram of an empty C60 cage SMT showed only two excited states.

“Because it contains two hydrogen atoms, water has two different nuclear spin states: ortho- and para-water. In ortho-water the hydrogen nuclear spins are in the same direction, while in para-water they are opposite to one another,” explains study lead author Shaoqing Du. “Understanding the transition between these two types of water is an important area of research.”

The researchers measured tunneling spectra for the H2O@C60 system and, by comparing the findings with theoretical calculations, were able to attribute the measured conductance peaks to rotational and vibrational excitations of the water molecule. They also investigated H2O@C60 using terahertz spectroscopy and the results agreed with the tunneling spectroscopy data.

Both techniques showed quantum rotational excitations of ortho- and para-water simultaneously. This demonstrates that the single water molecule transitioned between the two nuclear isomers (ortho- and para-water) within the timeframe of the experiment, which was approximately one minute.

“Our findings make an important contribution to the understanding of ortho-para fluctuation in water molecules,” says study corresponding author Kazuhiko Hirakawa. “Because water plays such an important role in chemistry and biology, and even in understanding our universe, we expect our findings to have a wide-ranging impact.”

Facts, background information, dossiers
  • water
  • Water molecules
  • terahertz spectroscopy
More about University of Tokyo
  • News

    Visualizing the invisible

    There are multiple ways to create two- and three-dimensional models of atoms and molecules. With the advent of cutting-edge apparatus that can image samples at the atomic scale, scientists found that traditional molecular models did not fit the images they saw. Researchers have devised a be ... more

    Electrons Passed Around

    Photoinduced charge transfers are an interesting electronic property of Prussian blue and some analogously structured compounds. A team of researchers has now been able to elucidate the ultrafast processes in the light-induced charge transfer between iron and manganese in a manganese-contai ... more

    How does your computer smell?

    A keen sense of smell is a powerful ability shared by many organisms. However, it has proven difficult to replicate by artificial means. Researchers combined biological and engineered elements to create what is known as a biohybrid component. Their volatile organic compound sensor can effec ... more

More about Kyoto University
  • News

    New process revolutionizes microfluidic fabrication

    Microfluidic devices use tiny spaces to manipulate very small quantities of liquids and gasses by taking advantage of the properties they exhibit at the microscale. They have demonstrated usefulness in applications from inkjet printing to chemical analysis and have great potential in person ... more

    Next-generation drug testing on chips

    Researchers at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS) in Japan have designed a small 'body-on-a-chip' device that can test the side effects of drugs s on human cells. The device solves some issues with current, similar microfluidic devices and offers prom ... more

    Disentangling chloroplast genetics

    Proper DNA inheritance is essential for healthy cell growth and division. The same goes for the genetic material found in chloroplasts: the energy centers of all plant cells. Chloroplast genomes -- likely vestiges of ancestral bacteria -- are organized into DNA-protein complexes called nucl ... more

More about Tohoku University
  • News

    A new method for atomic-resolution electron microscopes

    Electron microscopy enables researchers to visualize tiny objects such as viruses, the fine structures of semiconductor devices, and even atoms arranged on a material surface. Focusing down the electron beam to the size of an atom is vital for achieving such high spatial resolution. However ... more

    Novel two-step mechanism revealed in two-dimensional material formation

    Two-dimensional materials are incredibly thin. Typically only an atom thick, 2D materials exhibit highly desirable properties for advanced technologies, such as flexibility, superconductivity and more. Made from carefully transitioning individual components from gas or vapor to crystalline ... more

    Scanning the surface of lithium titanate

    Researchers at Tokyo Institute of Technology, Tohoku University and the University of Tokyo have applied advanced scanning methods to visualize the previously unexplored surface of a superconductor: lithium titanate (LiTi2O4). LiTi2O4 is the only known example of a so-called spinel oxide su ... more