Bewegung im Nanokosmos

29.05.2008

Wie "Nature Nanotechnology" berichtet, gelang es Forschern von der Universität Hamburg mit Hilfe eines Rasterkraftmikroskops die Bewegung von Molekülen, die in anderen größeren Molekülen eingesperrt sind, zu Messen und zu kontrollieren. Diese Forschungsergebnisse eröffnen völlig neuartige Wege für die Entwicklung von nanomechanischen Geräten, wie zum Beispiel molekulare Nano-Transporter.

Seit der Mensch den ersten Blick in den Nanokosmos warf, stand die Idee im Raum, diese winzige Welt der Atome und Moleküle gezielt zu manipulieren und molekulare Maschinen zu entwickeln, die selbständig beliebige Materialien und komplexe Systeme aus einzelnen Atomen und Molekülen aufbauen können. Den Nanokosmos können die Wissenschaftler inzwischen zwar mit aufwendigen Verfahren und großen Geräten gezielt Atom für Atom kontrollieren, aber molekulare Nano-Maschinen sind noch immer im Bereich der Science-Fiction angesiedelt. Nichtsdestotrotz wird an verschiedenen Antriebssystemen für solche Nano-Maschinen intensiv geforscht.

Einen völlig neuen Ansatz eröffnen die Arbeiten der beiden Forscher Dr. Makoto Ashino und Prof. Dr. Roland Wiesendanger von der Universität Hamburg. Zusammen mit einem internationalen Team aus Wissenschaftlern vom Max Planck Institut für Festkörperforschung, der Technischen Universität von Eindhoven, der Universität Nottingham und der Universität Hong Kong fanden die Hamburger Forscher neue Möglichkeiten der Messung der Kräfte, die Moleküle innerhalb von anderen Molekülen bewegen.

Für ihre Experimente sperrten die Forscher metallorganische Moleküle in Kohlenstoff-Nanoröhrchen ein. Die dabei entstehende Struktur kann man sich wie eine Erbsenschote vorstellen. Die so vorbereiteten Moleküle innerhalb von Nanoröhrchen wurden auf einer isolierenden Oberfläche platziert und mit Hilfe der berührungslosen Rasterkraftmikroskopie untersucht.

Neben der Untersuchung der Oberflächentopographie der "Erbsenschote" ermittelten die Wissenschaftler auch gleichzeitig die Energie, die der vibrierenden Spitze des Rasterkraftmikroskops verloren ging, während sie über die Oberfläche der Struktur bewegt wurde. Dadurch konnten die Hamburger Wissenschaftler erstmalig die Kräfte, die die kleinen metallorganischen Moleküle innerhalb der Kohlenstoff-Nanoröhrchen bewegen, messen und sogar gezielt kontrollieren. Dies stellt einen entscheidenden Durchbruch in der Erforschung von molekularen Maschinen und molekularen Transportern dar, die für die weitere Entwicklung der Nanotechnologie eine hohe Bedeutung haben.

Weitere News aus dem Ressort Wissenschaft

Weitere News von unseren anderen Portalen

Erkennen, Verstehen, Heilen: Die Welt der Diagnostik