Mit Algorithmen Krankheiten erkennen
Viele Ärzte stehen unter Zeitdruck und wünschen sich mehr Zeit für den Patienten. Intelligente Computerprogramme könnten hier helfen: Studenten der Biomedizinischen Technik an der Hochschule Landshut forschten im Rahmen einer Projektarbeit daran, wie Algorithmen Radiologen bei der Untersuchung medizinischer Bilder unterstützen können.
Dank Röntgenstrahlen, Ultraschall oder Kernspin können Ärzte Krankheiten im Körper ohne Operation entdecken. Dafür müssen Radiologen zahlreiche Bilder analysieren – das kostet viel Zeit und Konzentration. In Zukunft könnten Computer ihnen dabei die Arbeit erleichtern. Die Landshuter Studierenden Jakob Dexl, Lisa-Marie Kirchner, Maximilian Reiser und Michael Uhl des Studiengangs Biomedizinische Technik untersuchten, inwieweit bestimmte Algorithmen Schädel-MRT-Aufnahmen vorsortieren können. Das würde bedeuten, dass Ärzte sich stärker auf auffällige Bilder mit schwierigen Befunden konzentrieren können. Die Praxis Radiologie Mühleninsel aus Landshut stellte dafür echte MRT-Daten von Patienten zur Verfügung – natürlich komplett anonymisiert. Unterstützung erhielt das Team außerdem vom Radiologen Prof. Dr. Andreas Lienemann sowie im technischen Bereich vom Gesundheits-IT-Unternehmen Cerner Deutschland GmbH.
Machine Learning: Das Programm lernt mit
Für die automatische Klassifizierung von Bildern in „krank“ und „gesund“ kommen moderne Algorithmen des maschinellen Lernens zum Einsatz, die, ähnlich wie ein Radiologe, anhand vorhandener Daten die Einordnung trainieren. „Eine große Herausforderung bei diesem Projekt war, dass auch Bilder von gesunden Patienten stark voneinander abweichen, zum Beispiel aufgrund von gutartigen Erkrankungen oder des Alters. Die Heterogenität ist also riesig“, erklärt Dozentin Prof. Dr. Stefanie Remmele, die das Team bei ihren Projekt- und Abschlussarbeiten betreute. „Gleichzeitig unterscheidet der Radiologe zwischen krank und gesund manchmal nur anhand winziger Details. Das macht es für den Algorithmus sehr schwierig, die Bilder richtig einzuordnen.“ Die Studierenden definierten daher Bildausschnitte und Merkmale, anhand derer das Programm gesund und krank auseinanderhalten soll – beispielsweise Formen und Größen von Gehirnstrukturen. Dafür fütterten sie den Algorithmus mit Bildern und Daten.
Beim ersten Test im Rahmen der Studienprojekte schnitt dieser schon gut ab. Doch bis der computerunterstützte Befund Radiologen auch wirklich in ihrer Arbeit entlasten kann, „wird noch viel Forschung an dem Thema nötig sein“, meint Dexl. Er und sein Team haben beispielsweise nur ein Bild pro Patient genutzt – in der Realität werden für einen Befund mehr Bilder aufgenommen, etwa unterschiedliche Schnitte des Gehirns oder Ansichten. Dexls Kollege Reiser ist sich sicher: „Im Bereich Machine Learning wird schon seit Jahren geforscht. Auch in der Medizintechnik ist das Thema am Kommen.“
Meistgelesene News
Themen
Organisationen
Weitere News aus dem Ressort Wissenschaft
Holen Sie sich die Analytik- und Labortechnik-Branche in Ihren Posteingang
Mit dem Absenden des Formulars willigen Sie ein, dass Ihnen die LUMITOS AG den oder die oben ausgewählten Newsletter per E-Mail zusendet. Ihre Daten werden nicht an Dritte weitergegeben. Die Speicherung und Verarbeitung Ihrer Daten durch die LUMITOS AG erfolgt auf Basis unserer Datenschutzerklärung. LUMITOS darf Sie zum Zwecke der Werbung oder der Markt- und Meinungsforschung per E-Mail kontaktieren. Ihre Einwilligung können Sie jederzeit ohne Angabe von Gründen gegenüber der LUMITOS AG, Ernst-Augustin-Str. 2, 12489 Berlin oder per E-Mail unter widerruf@lumitos.com mit Wirkung für die Zukunft widerrufen. Zudem ist in jeder E-Mail ein Link zur Abbestellung des entsprechenden Newsletters enthalten.
Meistgelesene News
Weitere News von unseren anderen Portalen
Verwandte Inhalte finden Sie in den Themenwelten
Themenwelt Diagnostik
Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.
Themenwelt Diagnostik
Die Diagnostik ist das Herzstück der modernen Medizin und bildet in der Biotech- und Pharmabranche eine entscheidende Schnittstelle zwischen Forschung und Patientenversorgung. Sie ermöglicht nicht nur die frühzeitige Erkennung und Überwachung von Krankheiten, sondern spielt auch eine zentrale Rolle bei der individualisierten Medizin, indem sie gezielte Therapien basierend auf der genetischen und molekularen Signatur eines Individuums ermöglicht.
Zuletzt betrachtete Inhalte
Forschen im Nanoreich - Neue gemeinsame Nachwuchsgruppe vom GKSS-Forschungszentrum und der Universität Kiel
Erstmals Struktur von flüssigem Kohlenstoff gemessen - Forschungsteam gelingt bahnbrechendes Experiment am European XFEL
LabVantage erwirbt SEIN Infotech Südkorea - Mit der SEIN-Technologie wird LabVantage LIMS zur branchenweit ersten integrierten Plattform mit EHS-Management-Lösungen für den Energie- und Chemiesektor
Inverness Medical verkündet Markteinführung des TECHLAB C. DIFF QUIK CHEK COMPLETE - Der Schnelltest für die Diagnose von Clostridium difficile-Infektionen weist sowohl die gängigen Antigene als auch die Toxine A und B nach
IIVS kooperiert mit BASF und Givaudan zur Validierung eines tierversuchsfreien Tests für behördliche Zulassungen
Toxischen Elementen in Arzneimitteln nicht die Spur einer Chance lassen - Neue, hochgenaue Referenzlösungen für die SI-rückführbare Messung
Mannheimer Mumienforschungsprojekt mit Computertomographie unterstützt - Mumien geben ihr Inneres preis und bleiben dennoch völlig unversehrt