26.11.2018 - Université Côte D’Azur

Ein Protein, das die Drehung macht

Die Ursprünge der Asymmetrie

Unsere Welt ist grundsätzlich asymmetrisch: Denken Sie an die Doppelhelix der DNA, die asymmetrische Teilung von Stammzellen oder die Tatsache, dass das menschliche Herz auf der linken Seite steht..... Aber wie entstehen diese Asymmetrien, und sind sie miteinander verbunden?

Die Asymmetrie spielt in der Biologie auf allen Ebenen eine große Rolle. Ein Team des Biologie-Instituts Valrose (CNRS/Inserm/Université Côte d'Azur) hat in Zusammenarbeit mit Kollegen der University of Pennsylvania gezeigt, wie ein einziges Protein eine Spiralbewegung in einem anderen Molekül induziert. Durch einen Dominoeffekt bewirkt dies, dass sich Zellen, Organe und der gesamte Körper verdrehen und ein lateralisiertes Verhalten auslösen.

Am Institut für Biologie Valrose untersucht das Team um den CNRS-Forscher Stéphane Noselli, zu dem auch Inserm und die Université Cote d'Azur gehören, seit mehreren Jahren die Rechts-Links-Asymmetrie, um diese Rätsel zu lösen. Die Biologen hatten die erste genkontrollierende Asymmetrie in der gemeinsamen Fruchtfliege (Drosophila) identifiziert, einem der bevorzugten Modellorganismen der Biologen. In jüngster Zeit zeigte das Team, dass dieses Gen bei Wirbeltieren die gleiche Rolle spielt: Das von ihm produzierte Protein Myosin 1D steuert die Wicklung oder Rotation von Organen in die gleiche Richtung.

In dieser neuen Studie haben die Forscher die Produktion von Myosin 1D in den normalerweise symmetrischen Organen der Drosophila, wie der Atemwege, induziert. Spektakulär war, dass dies ausreichte, um eine Asymmetrie auf allen Ebenen zu induzieren: deformierte Zellen, sich um sich selbst windende Luftröhre, die Verdrehung des ganzen Körpers und schraubenförmige Lokomotivverhalten bei Fliegenlarven. Bemerkenswert ist, dass sich diese neuen Asymmetrien immer in die gleiche Richtung entwickeln.

Um den Ursprung dieser kaskadierenden Effekte zu identifizieren, trugen auch Biochemiker der University of Pennsylvania zum Projekt bei: Auf einem Glasdeckglas brachten sie Myosin 1D mit einer Komponente des Zytoskeletts (dem "Rückgrat" der Zelle), nämlich Aktin, in Kontakt. Sie konnten beobachten, dass die Interaktion zwischen den beiden Proteinen das Aktin in eine Spirale brachte.

Neben seiner Rolle in der Rechts-Links-Asymmetrie zwischen Drosophila und Wirbeltieren scheint Myosin 1D ein einzigartiges Protein zu sein, das in der Lage ist, Asymmetrie in sich selbst auf allen Ebenen zu induzieren, zuerst auf molekularer Ebene, dann durch einen Dominoeffekt, auf Zell-, Gewebe- und Verhaltensebene. Diese Ergebnisse deuten auf einen möglichen Mechanismus für das plötzliche Auftreten neuer morphologischer Merkmale im Laufe der Evolution hin, wie z.B. das Verdrehen von Schneckenkörpern. Myosin 1D scheint somit alle notwendigen Eigenschaften für das Entstehen dieser Innovation zu haben, da ihr Ausdruck allein ausreicht, um eine Verdrehung in allen Größenordnungen zu induzieren.

Université Côte D’Azur

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Myosin
  • Organe
  • Inserm
  • Desoxyribonukleinsäure
  • CNRS
  • Aktin
  • Wirbeltiere
  • Stammzellen
  • Schnecken
  • Modellorganismen
  • Proteine
  • Drosophila melanogaster
Mehr über Centre National de la Recherche Scientifique
  • News

    Hepatitis: 3D-Strukturbestimmung des "Tores" zur Leber

    Obwohl NTCP ein wichtiges Tor zur Leber ist, wurde es bisher nicht gut beschrieben. Das Na+-Taurocholat-cotransportierende Polypeptid (NTCP) ist ein Protein, das ausschließlich in der Membran von Leberzellen vorkommt und das Recycling von Gallensäuremolekülen ermöglicht. Es ist auch der zel ... mehr

    Ameisen können Krebs "erschnüffeln"!

    Die Krebserkennung ist eine große Herausforderung für die öffentliche Gesundheit, und die derzeit verfügbaren Methoden, wie MRT und Mammographie, sind oft teuer und invasiv. Dies schränkt ihren Einsatz in großem Maßstab ein. Um diese Einschränkungen zu umgehen, werden alternative Methoden e ... mehr

    Intelligente Bakterien zur Erkennung von Krankheiten

    Forscher des Inserm und des CNRS Montpellier, in Kooperation mit dem CHRU Montpellier und der Stanford Universität (USA), haben Bakterien so transformiert, dass diese Erkrankungen allein durch das Vorhandensein bestimmter Moleküle im Blut oder Urin erkennen können. Die Bakterien werden so z ... mehr