27.01.2014 - Technische Universität München

Mit Mathematik einzigartige Zellen aufspüren

Statistische Methoden verbessern biologische Einzelzell-Analyse

Stammzellen verwandeln sich in Herzzellen, Hautzellen verwandeln sich in Krebszellen, selbst Zellen einer Gewebeart unterscheiden sich geringfügig voneinander. Ein wichtiges Werkzeug dazu, solche Heterogenitäten zu verstehen, sind Einzelzell-Analysen. Diese jedoch sind immer noch aufwändig und teuer. Zudem verursacht die Handhabung der Einzelzellen eine erhebliche Ungenauigkeit der Messwerte. Wissenschaftler der Technischen Universität München (TUM), des Helmholtz Zentrums München und der Universität Virginia (USA) haben nun einen Weg gefunden, wie sich die Analysen durch mathematische Methoden vereinfachen und verbessern lassen.

Jede unserer Körperzellen ist einzigartig. Selbst Zellen einer Gewebeart, die unter dem Mikroskop völlig gleich aussehen, unterscheiden sich geringfügig voneinander. Um zu verstehen, wie sich aus einer Stammzelle eine Herzzelle entwickeln kann, warum die eine Beta-Zelle Insulin produziert und die andere nicht und warum eine normale Gewebezelle plötzlich zu einer Krebszelle wird, untersuchen Wissenschaftler seit einigen Jahren gezielt die Aktivitäten der Ribonucleinsäuren, der RNA.

Permanent werden Stoffe auf- und abgebaut. Ständig lesen RNA-Moleküle Baupläne für Eiweiße aus der Erbsubstanz ab und lassen sie von anderen Eiweißen produzieren. Inzwischen hat die Wissenschaft die Methoden so verfeinert, dass es möglich ist, alle in einer einzigen Zelle zu einem bestimmten Zeitpunkt aktiven RNA-Moleküle zu erfassen.

Ende Dezember 2013 wurde die Einzelzell-Sequenzierung vom Fachblatt Nature Methods zur Methode des Jahres 2013 erklärt. Doch die Untersuchung einzelner Zellen ist extrem aufwändig und die Handhabung der Zellen verursacht Fehler und Ungenauigkeiten, die ein erhebliches statistisches Rauschen zur Folge haben. Vor allem schwächere Unterschiede in der Genregulierung gehen darin unter oder werden gar nicht erst sichtbar.

Einfacher und genauer dank Statistik

Wissenschaftler unter der Leitung von Professor Fabian Theis, Inhaber des Lehrstuhls für Mathematische Modelle biologischer Systeme der TU München und Leiter des Instituts für Computational Biology am Helmholtz Zentrum München, haben nun einen Weg gefunden, wie sie mit Methoden der mathematischen Statistik die Einzelzell-Analyse wesentlich verbessern können.

Statt nur jeweils einer Zelle nahmen sie zwischen 16 und 80 Proben mit jeweils zehn Zellen. „Eine Menge von zehn Zellen ist wesentlich leichter zu handhaben“, sagt Professor Theis. „Bei der zehnfachen Menge an Zellmaterial werden die Umgebungseinflüsse deutlich zurück gedrängt.“ Allerdings sind die Zellen mit unterschiedlichen Eigenschaften dann zufällig über die Proben verteilt. Daher entwickelte Theis´ Mitarbeiterin Christiane Fuchs statistische Methoden, um die Einzelzell-Eigenschaften dennoch zu identifizieren.

Kombination von Modell und Experiment

Auf der Basis bekannter biologischer Daten modellierten Theis und Fuchs die Verteilung für den Fall von Genen, die sich in zwei definierten regulatorischen Zuständen befinden können. Zusammen mit den Biologen Kevin Janes und Sameer Bajikar von der Universität Virginia in Charlottesville (USA) konnten sie experimentell belegen, dass mit Hilfe der statistischen Methoden aus den Messergebnissen der zehn Zellen enthaltenden Proben genauere Ergebnisse errechnet werden können als mit der Analyse der gleichen Anzahl von Einzelzellproben.

In vielen Fällen werden durch einen Faktor gleich mehrere Genreaktionen angestoßen. Auch auf solche Fälle ließ sich das statistische Verfahren anwenden. Fluoreszierende Marker zeigen die Genaktivitäten, und man erhält so ein Mosaik aus dem sich wiederum ablesen lässt, ob verschiedene Zellen unterschiedlich auf den Faktor reagieren.

Die Methode ist so empfindlich, dass sie selbst eine Abweichung unter 40 sonst gleichen Zellen noch zeigt. Dass diese Abweichung tatsächlich ein Effekt ist und nicht ein zufälliger Ausreißer, konnte experimentell belegt werden.

Die Arbeit wurde unterstützt aus Mitteln der American Cancer Society, des National Institutes of Health, der Deutschen Forschungsgemeinschaft, des Deutschen Akademischen Austauschdienstes, des Pew Scholars Program in the Biomedical Sciences, der David and Lucile Packard Foundation, der National Science Foundation sowie des European Research Council.

Fakten, Hintergründe, Dossiers
  • Einzelzellanalysen
  • TU München
  • Helmholtz Zentrum München
  • University of Virginia
  • Mathematik
  • RNA
Mehr über TU München
  • News

    Neue Röntgenmethode für Corona-Diagnose im Patiententest

    Forscher der Technischen Universität München (TUM) haben ein neuartiges Röntgenverfahren für die Lungendiagnostik entwickelt, das sie nun in einem der ersten Einsätze für die Diagnose der vom Coronavirus verursachten Lungenerkrankung Covid-19 testen wollen. Das Verfahren könnte die für die ... mehr

    Molekulare Landkarte für die Pflanzenforschung

    Pflanzen sind für das Leben auf der Erde unerlässlich. Sie liefern die Nahrung für praktisch alle Lebewesen, den Sauerstoff zum Atmen, und sie regulieren das Klima des Planeten. Proteine haben eine Schlüsselstellung bei der Steuerung der Lebensvorgänge in Pflanzen. Unter der Federführung de ... mehr

    Genschere gegen unheilbare Muskelkrankheit

    Die Duchenne-Muskeldystrophie ist die häufigste muskuläre Erbkrankheit bei Kindern. Ein Münchner Forscherteam hat eine Gentherapie entwickelt, die an DMD Erkrankten dauerhaft helfen könnte. Beteiligt ist auch LMU-Wissenschaftler Eckhard Wolf. Damit Muskeln sich regenerieren, ist Dystrophin ... mehr

  • Stellenangebote

    Radiochemiker/-analytiker (m/w/d)

    Wir suchen zum nächstmöglichen Termin in Vollzeit (40,1 Std./Woche) für den Bereich Betriebschemie Verstärkung. Sie übernehmen nach entsprechender Einarbeitung und Anerkennung durch die zuständige Aufsichtsbehörde die Leitung des Teilbereichs Betriebschemie und tragen maßgeblich zur Einhal ... mehr