Forschungszentrum Jülich stärkt seine Zusammenarbeit mit der Neutronenquelle FRM II

Neutronen ermöglichen Blick in komplexe Systeme in Biologie und Energietechnik

27.12.2010 - Deutschland

Mit einem umfassenden Kooperationsvertrag wurde die Neutronenforschung in Deutschland entscheidend gestärkt. Das Forschungszentrum Jülich, die Technische Universität München, das Bayerische Staatsministerium für Wissenschaft und das Bundesministerium für Bildung und Forschung regeln damit, wie sich deutsche Großforschungszentren in den nächsten zehn Jahren mit rund 300 Millionen Euro beteiligen, um die wissenschaftliche Nutzung der leistungsfähigsten deutschen Neutronenquelle zu verbessern.

Zukünftig  werden die beteiligten Großforschungszentren der Helmholtz Gemeinschaft rund 30,3 Millionen Euro jährlich für Neutronenforschung aufwenden. Neben dem Forschungszentrum Jülich werden auch die Helmholtz-Zentren in Berlin und Geesthacht neue Instrumente entwickeln, ihre Experimente ausbauen sowie das wissenschaftliche und technische Personal aufstocken. Das Forschungszentrum Jülich wird seinen Instrumentenpark bis 2013 von derzeit fünf auf elf wissenschaftliche Geräte erweitern und auf dem neusten Stand der Forschung halten. Die Helmholtz-Zentren Berlin und Geesthacht betreiben zusammen drei Geräte. Insgesamt stehen am FRM II dann 30 Großgeräte zur Verfügung. Aus ihren Budgets tragen die Zentren rund 10,5 Millionen Euro im Jahr bei, das Bundesministerium für Bildung und Forschung unterstützt die Zentren sowie die wissenschaftliche Infrastruktur des FRM II mit weiteren 19,8 Millionen Euro jährlich, wovon 16,7 Millionen Sonderförderung und 3,1 Millionen Verbundsforschungsförderung sind.

"Neutronen sind eine Schlüsseltechnologie für Wissenschaftler auf fast allen Gebieten", sagt Prof. Sebastian M. Schmidt, Mitglied des Vorstands des Forschungszentrums Jülich. "Unser Engagement an der Neutronenquelle FRM II wird Spitzenforschung ermöglichen und dazu beitragen, biologische und chemische Prozesse aufzuklären und elektronische und magnetische Phänomene zu verstehen."

Mit Neutronen kann man tief ins Innere von Materie blicken. Dabei lässt sich nicht nur erkennen, wie Atome und Moleküle angeordnet sind, sondern auch, wie sie sich bewegen und wie sie miteinander wechselwirken. Neutronen als Bausteine der Atomkerne sind die idealen Sonden, um Kristalle, Membranen oder andere Systeme auf der Ebene von Atomen zu untersuchen. Forschung mit Neutronen bereitet den Weg für die Entwicklung magnetischer Materialien für die Computerspeicher von morgen, von umweltfreundlichen Reinigern für Industrie und Haushalt, für die Stromgewinnung aus der Abwärme von Motoren oder das bessere Verständnis biomolekularer Vorgänge in Zellen. Darüber hinaus öffnet sie den Blick auf die Komplexität solcher Systeme und treibt den Paradigmenwechsel in der heutigen Wissenschaft voran: weg von der Betrachtung von Ausschnitten und Einzelteilen hin zu Prozessen wie Selbstorganisation, Kollektivität, Biomimetik und funktionellen Materialien.

Neutronen sind elektrisch neutrale Bausteine der Atomkerne. Sie werden in Forschungsreaktoren oder Spallationsquellen erzeugt und auf die zu untersuchenden Proben gelenkt. An den Atomen und Molekülen der Proben "prallen" sie ab; dabei können sie ihre Richtung und Geschwindigkeit ändern. Die Art dieser "Streuung" gibt Auskünfte über die Anordnung und Bewegung der Atome in der Probe, die Methoden wie Röntgen oder Elektronenmikroskopie verborgen bleiben. Mit Neutronen untersuchen Jülicher Forscher beispielsweise magnetische Materialen für die Informationstechnologie oder die sogenannte "Weiche Materie", zu der industriell wichtige Kunststoffe oder medizinisch interessante Eiweißstoffe zählen.

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Zuletzt betrachtete Inhalte

Dialog über Chancen und Risiken synthetischer Nanopartikel beginnt - 150 Fachleute erarbeiten Strategie, die Umwelt- und Gesundheitswirkungen der Nanotechnologie klären soll

Wissenschaftler der Freien Universität entschlüsseln Alzheimer Entstehungsmechanismus

Bodenkrusten emittieren Stickoxide und salpetrige Säure - Biologische Bodenkrusten setzen große Mengen reaktiver Stickstoffverbindungen frei

Bodenkrusten emittieren Stickoxide und salpetrige Säure - Biologische Bodenkrusten setzen große Mengen reaktiver Stickstoffverbindungen frei

Neue Technik durchbricht eine Technologie-Barriere, die die RNA-Bildgebung 50 Jahre lang einschränkte - Forscher entwickeln Werkzeuge zur Schärfung der 3D-Ansicht von großen RNA-Molekülen

Neue Technik durchbricht eine Technologie-Barriere, die die RNA-Bildgebung 50 Jahre lang einschränkte - Forscher entwickeln Werkzeuge zur Schärfung der 3D-Ansicht von großen RNA-Molekülen

"Fingerabdrücke" geben Auskunft über Bruchverhalten von Gummiwerkstoffen - Dresdner Forscher betreten Neuland in der Bruchmechanik

Neuer Einblick in die Reifung von miRNAs

Neuer Einblick in die Reifung von miRNAs

VOC einfach und günstig bestimmen - Richtlinie VDI 2100 Blatt 2

Vier Deutsche Erfinder als Finalisten für Europäischen Erfinderpreis 2017 nominiert

Neuer Biochip als Test von nicht zugelassenen genetisch veränderten Organismen in Lebensmitteln

Tiefgehende Einblicke in die Korrosion von Glas - Forscher beobachten in Echtzeit die Reaktion von Silikatglas mit wässrigen Lösungen

Tiefgehende Einblicke in die Korrosion von Glas - Forscher beobachten in Echtzeit die Reaktion von Silikatglas mit wässrigen Lösungen

Nachweis von geringsten Proteinmengen durch Aptamere und PCR

Universitätsprofessorin Anna Gorbushina übernimmt die Leitung der BAM-Abteilung „Material und Umwelt“