Ein neues Werkzeug für die Kryo-Elektronenmikroskopie

Kryo-EM mit einer sonst in der Materialforschung genutzten Methode kombiniert

12.09.2022 - Deutschland

Forschende des Forschungszentrums Jülich und der Heinrich-Heine-Universität Düsseldorf um Prof. Dr. Carsten Sachse machen Biomoleküle mittels Kryo-Elektronenmikroskopie, kurz: Kryo-EM, auf atomarer Ebene sichtbar. In einer jetzt in der Fachzeitschrift Nature Methods erschienenen Publikation stellen sie ein neues Verfahren vor, das die Kryo-EM mit einer sonst in der Materialforschung genutzten Methode kombiniert. Die Ergebnisse werden auch in einem Nature Briefing vorgestellt und eingeordnet.

Forschungszentrum Jülich / Ivan Lazic, Carsten Sachse

Aufnahme (oben) und Struktur (unten) des Proteins Hämocyanin (rechts) sowie des Tabakmosaikvirus (links) mittels iDPC-STEM. Unten die dazugehörigen 3D Strukturen bei 3,5 sowie 6,5 Å Auflösung.

Die noch relativ junge Technik der Kryo-EM hat im Vergleich zu der seit Jahrzehnten etablierten Röntgenkristallographie einen entscheidenden Vorteil: Eiweißbausteine, Proteine, lassen sich damit im schockgefrosteten Zustand in ihrer natürlichen Umgebung beobachten, ohne sie zuvor zu einem künstlichen Kristall umbauen zu müssen. Üblicherweise kommt, nach dem Schockfrosten, das Verfahren der Transmissionselektronenmikroskopie zum Einsatz. Bei der alternativen Methode, die die Forscher:innen nun angewendet haben, handelt es sich dagegen um eine Weiterentwicklung der Rastertransmissionselektronenmikroskopie mit integrierten differentiellem Phasenkontrast, kurz iDPC-STEM.

„Dieses Verfahren ist bislang vorrangig in der Materialforschung zur Anwendung gekommen und hat dort bereits zu sehr hohen Auflösungen geführt. Bei der Untersuchung biologischer Proben haben wir damit nun direkt eine Abbildungsqualität erreicht, wie sie vor einigen Jahren durch die Kryo-Elektronenmikroskopie erstmals möglich wurde“, erläutert Prof. Carsten Sachse, Direktor am Ernst-Ruska-Centrum des Forschungszentrums Jülich und Professor an der Heinrich-Heine-Universität Düsseldorf.

Gemeinsam mit Forschungspartnern des Analytik-Unternehmens Thermo Fischer Scientific in Eindhoven konnte er Proteinstrukturen mittels iDPC-STEM mit einer Auflösung im Sub-Nanometerbereich von 3,5 Angström darstellen. „Die Kryo-Elektronenmikroskopie ist im Vergleich dazu heute bereits etwas weiter fortgeschritten. Aber unsere Ergebnisse zeigen, dass iDPC-STEM prinzipiell in der Lage ist, mit einigen Optimierungen ähnliche Auflösungen wie die heutige Kryo-EM zu erzielen und die Möglichkeiten der Strukturanalyse zu erweitern; insbesondere bei sehr heterogenen, ungleichmäßigen Proben oder einzelnen Partikeln, wenn die Möglichkeiten der Mittelung begrenzt sind“, so Sachse.

Bei der herkömmlichen Kryo-Elektronenmikroskopie werden Tausende, manchmal auch Zehn- oder Hunderttausende Schnappschüsse einer Probe aus unterschiedlichsten Blickrichtungen aufgenommen. Ein leistungsstarker Computer errechnet daraus anschließend ein detailliertes dreidimensionales Bild des Moleküls oder Partikels. Die Rasterelektronenmikroskopie tastet Objekte dagegen in winzigen Schritten zeilenweise ab und erzeugt so ein zusammengesetztes Bild, das ebenso viele Biomoleküle enthält und wie bei der herkömmlichen Kryo-EM als Grundlage für die dreidimensionale Strukturberechnung dient. Der eingesetzte Elektronenstrahl ist wie auch bei der Kryo-Elektronenmikroskopie äußerst niedrig dosiert. Denn Biomoleküle sind typischerweise äußerst empfindlich. So wird verhindert, dass die hohe Energie des Strahls die empfindlichen Strukturen zerstört.

Originalveröffentlichung

Weitere News aus dem Ressort Wissenschaft

Meistgelesene News

Weitere News von unseren anderen Portalen

Zuletzt betrachtete Inhalte

Erstmals alle Zellen menschlicher Zähne detailliert entschlüsselt - Zahnpulpa und der Zahnhalteapparat sind anfällig für Karies und Parodontitis und enthalten Stammzellen, die ein grosses regeneratives Potenzial besitzen

Erstmals alle Zellen menschlicher Zähne detailliert entschlüsselt - Zahnpulpa und der Zahnhalteapparat sind anfällig für Karies und Parodontitis und enthalten Stammzellen, die ein grosses regeneratives Potenzial besitzen

QIAGEN und Center for Molecular Medicine vereinbaren Zusammenarbeit zur Erforschung molekulardiagnostischer Marker

Ein schärferes Bild von Proteinen - Neue Technik verspricht eine Revolution bei der Darstellung von Proteinen und anderen lebenswichtigen Biomolekülen

Ein schärferes Bild von Proteinen - Neue Technik verspricht eine Revolution bei der Darstellung von Proteinen und anderen lebenswichtigen Biomolekülen

Rolf Preuß übernimmt Marketingleitung bei CHEMIE.DE - Europas führendes Informationsportal für Chemie, Life Sciences und Analytik baut seine Position im B2B Marketing weiter aus

Rolf Preuß übernimmt Marketingleitung bei CHEMIE.DE - Europas führendes Informationsportal für Chemie, Life Sciences und Analytik baut seine Position im B2B Marketing weiter aus

Köln wird deutsches Zentrum der Beschleuniger - Massenspektrometrie

Innovative Methode zur molekularen Bildgebung - AIT und TU Wien entwickeln neues Verfahren

Innovative Methode zur molekularen Bildgebung - AIT und TU Wien entwickeln neues Verfahren

Sondergasezentrum der Westfalen AG akkreditiert. - Urkunden nach nur kurzer Zeit erhalten.

Messgerät für Gerüche entwickelt

Erster Test für das neuartige Coronavirus in China ist entwickelt

Erster Test für das neuartige Coronavirus in China ist entwickelt

Leuchtende Nanokristalle - BAM entwickelt Messmethoden für lumineszente Materialien

Leuchtende Nanokristalle - BAM entwickelt Messmethoden für lumineszente Materialien

LUM ist nominiert für den Innovationspreis Berlin-Brandenburg 2012 - Preisverdächtige Innovation zur Analyse von Klebe- und Coatingfestigkeiten - LUMiFrac

Blutvergiftung: Schnellere Analyse von Resistenzen

Blutvergiftung: Schnellere Analyse von Resistenzen