25.05.2022 - Max-Planck-Institut für marine Mikrobiologie

Mikropartikel mit Gefühl

Neue Methode zur gleichzeitigen Messung von Strömung und Sauerstoff - So genau und schnell wie nie

Ein internationales Forschungsteam unter Leitung des Bremer Max-Planck-Instituts für Marine Mikrobiologie, der Universität Aarhus und des Science for Life Institute in Uppsala hat winzige Partikel entwickelt, die den Sauerstoffgehalt in ihrer Umgebung anzeigen. So schlagen sie zwei Fliegen mit einer Klappe: Mit den kleinen Kügelchen können sie Strömungen und gleichzeitig den Sauerstoffgehalt verfolgen – spannende Perspektiven für viele Forschungsgebiete, von der Biologie bis zur Physik.

Die Oberfläche einer Koralle ist rau. Das harte Skelett ist besiedelt von Polypen, die ihre Tentakel ins umliegende Wasser strecken, um Nahrung herauszufiltern. Aber wie genau fließt das Wasser über die Korallenoberfläche, welche Wirbel und Strömungen entstehen, und was bedeutet das für die Versorgung der Koralle und ihrer assoziierten Algen? Bislang gab es keine Antwort auf diese Fragen. Jetzt hat ein internationales Forschungsteam um Soeren Ahmerkamp vom Max-Planck-Institut für Marine Mikrobiologie in Bremen, Klaus Koren von der dänischen Universität Aarhus und Lars Behrendt von der Universität Uppsala und dem SciLifeLab in Schweden eine Methode entwickelt, mit der sich Strömungen und Sauerstoffkonzentrationen gleichzeitig auf kleinstem Raum untersuchen lassen. Und tatsächlich: Nun kann man sehen, wie die Korallen mit ihren kleinen Flimmerhaaren eine Strömung erzeugen, mit der sie mehr Sauerstoff heranfächeln.

So genau und schnell wie nie

Sauerstoff und Leben sind untrennbar verknüpft, von einzelnen Zellen bis hin zu ganzen Organismen. In kleinster räumlicher und zeitlicher Auflösung, auf wenigen Mikrometern und innerhalb von Millisekunden, verändern sich Sauerstoffwerte infolge von Strömungen oder dadurch, was die Organismen machen. Bisherige Methoden haben Sauerstoffwerte und Strömungen meist getrennt gemessen, wodurch viele Zusammenhänge nicht erfasst werden konnten. Ahmerkamp und seine Kolleginnen und Kollegen machen das nun in einem: Sie messen die Sauerstoffkonzentration und Strömung gleichzeitig und mit bisher unerreichter Genauigkeit und Geschwindigkeit. Die Forschenden taufen ihre neu entwickelte Methode sensPIV. PIV ist die Abkürzung für „Particle Image Velocimetry“, eine etablierte Methode zur Strömungsmessung mit Partikeln. Nun kommt noch das „sens“ hinzu, die Partikel werden quasi gefühlvoll.

Die Arbeit war eine technische Herausforderung. In tüfteliger Kleinarbeit gelang es dem Team, winzige Kügelchen mit einem Durchmesser von unter 1 Mikrometer herzustellen, die mit einem fluoreszierenden Farbstoff getränkt sind. (Zum Vergleich: Ein menschliches Haar hat einen Durchmesser von etwa 100 Mikrometern.) Dieser Farbstoff leuchtet umso heller, je weniger Sauerstoff vorhanden ist. „Wichtig war es vor allem, dass der Farbstoff sehr schnell auf den Sauerstoffgehalt reagiert. Zudem brauchten wir Kameratechniken, die die Fluoreszenz gut aufnehmen können“, erklärt Mitautor Farooq Moin Jalaluddin vom Bremer Max-Planck-Institut. „Mit der sensPIV-Methode sind wir nun in der Lage, auch in schnellen und kleinräumigen Strömungen mit ausreichender Auflösung zu messen.“

Nützlich für Medizin, Biologie und vieles mehr

Die Anwendungsmöglichkeiten der neuen Methode sind vielfältig. Viele Organismen interagieren mit Sauerstoff, und so kann sensPIV helfen, offene Fragen in den Biowissenschaften zu beantworten. Ahmerkamp und seine Kolleginnen und Kollegen nutzten es beispielsweise nicht nur an Korallen, sondern auch um detailliert zu betrachten, wie Sauerstoff durch Sand fließt. Auch kleinskalige Stoffwechselvorgänge an Mikroben, Tieren und Pflanzen können so untersucht werden. In der Mikrofluidik, die untersucht, wie sich Flüssigkeiten auf kleinstem Raum verhalten, und in der Medizin eröffnen sich zahlreiche weitere Anwendungsmöglichkeiten.

Die erste Idee zu dieser Messmethode entstand schon vor einigen Jahren. „Aber erst durch das tolle internationale Team und unsere enge Zusammenarbeit war es möglich, dass aus der Idee nun eine funktionierende und vielseitig einsetzbare Anwendung wird“, sagt Ahmerkamp. Nun ist das Team gespannt auf die kommenden Einsatzbereiche der Methode. „Die Partikel sind nicht schwer herzustellen, wenn man erst mal weiß, wie’s geht“, so Klaus Koren. Auch an eine Weiterentwicklung der Methode wird schon gedacht: „Gerne würden wir sensPIV auch für andere Substanzen als Sauerstoff sensibilisieren. Klaus Koren ist schon wieder am tüfteln.“ sagt Lars Behrendt.

Max-Planck-Institut für marine Mikrobiologie

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Sauerstoffgehaltmessung
  • Strömungsmessungen
  • Sauerstoffkonzentration
  • Sauerstoff
  • Fluoreszenz
Mehr über MPI für Marine Mikrobiologie
Mehr über Max-Planck-Gesellschaft
  • News

    Neue Methode revolutioniert Krebsdiagnose

    Wie entstehen Krebserkrankungen? Wie verändert die zelluläre Zusammensetzung eines Tumors dessen maligne Eigenschaften? Diese Fragen sind entscheidend, um Krebserkrankungen zu verstehen und um eine dauerhafte Heilung zu finden. Ein deutsch-dänisches Team unter der Leitung von Professor Matt ... mehr

    Struktur eines Schlüsselproteins für die Zellteilung gibt Rätsel auf

    An der menschlichen Zellteilung sind Hunderte von Proteinen beteiligt. Mit Kenntnis der 3D-Struktur dieser Proteine können wir verstehen, wie unser genetisches Material dupliziert und über Generationen hinweg weitergegeben wird. Die Gruppen um Andrea Musacchio und Stefan Raunser am Max-Plan ... mehr

    Neue Methode zur Erforschung der Nanowelt

    Wissenschaftler des Max-Planck-Instituts für die Physik des Lichts (MPL) und des Max-Planck-Zentrums für Physik und Medizin (MPZPM) in Erlangen präsentieren einen großen Fortschritt bei der Charakterisierung von Nanopartikeln. Sie nutzten eine spezielle Mikroskopie-Methode, die auf Interfer ... mehr

Mehr über Aarhus University
  • News

    Molekulare Spurensuche im arktischen Sediment

    Ölquellen und die Tiefen der Erdkruste sind wohl der Ursprung hitzeliebender Bakterien im arktischen Meeressediment. Zu diesem Ergebnis hat ein vom Wissenschaftsfonds FWF unterstütztes Projekt beigetragen, in dessen Mittelpunkt molekularbiologische Methoden zur Untersuchung solcher "fehlpla ... mehr

    Neue Nanodrähte aus "Schmierstoff"

    Nanoröhren aus Kohlenstoff gelten wegen ihrer herausragenden physikalischen und chemischen Eigenschaften als Top-Kandidaten, um mikroelektronische Bauelemente weiter zu miniaturisieren und das heute gängige Silizium eines Tages zu verdrängen. Der technologischen Anwendung stehen jedoch ungü ... mehr

Mehr über Uppsala University
  • News

    Modell kann Entwicklung von Antibiotikaresistenzen bei Bakterien voraussagen

    Ein Team von Wissenschaftlern der Uni Köln und der Universität in Uppsala (Schweden) hat ein Modell erstellt, das beschreiben und vorhersagen kann, wie sich Antibiotikaresistenzen bei Bakterien entwickeln. Die Resistenzen gegen Antibiotika entstehen durch eine Vielzahl von Mechanismen. Eine ... mehr

    Röntgenlaser durchleuchtet lebende Bakterien

    Ein internationales Forscherteam hat erstmals mit dem weltstärksten Röntgenlaser lebende Bakterienzellen durchleuchtet. Die verwendete Methode erreicht eine höhere räumliche und zeitliche Auflösung als optische Mikroskopieverfahren und bietet zudem die Chance, detaillierte dreidimensionale ... mehr

    Neuer Bluttest für Alzheimer

    Nur wer wirklich an Alzheimer erkrankt ist, darf mit Medikamenten dagegen behandelt werden. Deshalb sucht die Alzheimer-Forschung nach einem geeigneten Test, mit dem sich die Krankheit "Alzheimer" möglichst frühzeitig und eindeutig bestimmen lässt. Wissenschaftler der Arbeitsgruppe für Mole ... mehr