29.03.2022 - Changchun Institute of Optics, Fine Mechanics and Physics

Snapshot-Messung des Zirkulardichroismus einzelner Nanostrukturen

Die 3D-Konformation eines Moleküls oder einer Nanostruktur bestimmt seine Funktion. So kann beispielsweise eine linkshändige Aminosäure gesundheitsfördernd sein, während ihr rechtshändiges Gegenstück giftig sein kann. Mit den heutigen optischen Bildgebungsverfahren kann man ein Molekül oder eine Nanostruktur genau lokalisieren, aber die Auflösung ihrer inneren 3D-Struktur erfordert zusätzliche spektroskopische Informationen. Die CD-Spektroskopie ist die am häufigsten verwendete Technik für diesen Zweck. Wenn es gelingt, die CD-Spektroskopie mit bildgebenden Verfahren zu kombinieren, wird es möglich, einzelne funktionelle Nanoeinheiten in Echtzeit zu verfolgen und zu analysieren. Dies wird zu vielen wichtigen Anwendungen auf dem Gebiet der Nanowissenschaften und der Biologie führen.

Die derzeitigen CD-Spektrometer sind jedoch auf die Polarisationsmodulation des Anregungslichts angewiesen und erfordern komplizierte mehrstufige Messungen, wodurch das Potenzial der CD-Spektroskopie nicht voll ausgeschöpft werden kann. Um dieses Problem zu lösen, hat ein Team von Wissenschaftlern unter der Leitung von Prof. Weihua Zhang und Prof. Yanqing Lu vom College of Engineering and Applied Sciences der Nanjing University, China, zusammen mit Kollegen eine polarisationsdispersive bildgebende CD-Spektrometrietechnik entwickelt, die in der Zeitschrift Light Science & Application veröffentlicht wurde. Die neue Methode arbeitet mit Hilfe eines Flüssigkristall-Polarisationsgitters (LCPG) mit Nanomustern mit den Signalen statt mit dem Anregungslicht. Das LCPG kann die links/rechts zirkular polarisierten Komponenten der optischen Signale mit gleicher Effizienz in verschiedene Richtungen streuen (Gesamtbeugungseffizienz >95% bei optimaler Wellenlänge), so dass wir das CD-Spektrum mit einem einzigen Schuss erfassen können. Mit der neuen Technik untersuchten sie ein Modellsystem, nämlich das gekoppelte plasmonische Nanostäbchenpaar unter Verwendung des Born-Kuhn-Modells, und wiesen theoretisch nach, dass die neue Methode der herkömmlichen CD-Spektroskopie gleichwertig ist, wenn nichtpolarisierte Anregungen verwendet werden.

Die Schlüsselkomponente des neuen CD-Spektrometers ist das LCPG. Im Gegensatz zu den herkömmlichen Polarisationskomponenten, die in der Regel schwer zu kalibrieren und kompliziert zu bedienen sind, ist der LCPG einfach, genau und robust. Die Wissenschaftler fassen zusammen:

"Das LCPG ist eine ideale Lösung für polarisationsbezogene Messungen. Erstens ist seine Genauigkeit durch die Theorie garantiert. Mathematisch gesehen sind die raumvariablen geometrischen Phasen für LCP- und RCP-Licht, die vom LCPG erzeugt werden, konjugiert. Folglich werden sie immer in Beugungen ±1. Ordnung mit absolut gleicher Effizienz aufgeteilt.

Dieses Polarisationsdispersionsverhalten ist nicht-dispersiv, genau und hocheffizient. Zweitens ist das LCPG ein ausgereiftes Verfahren, und hochwertige LCPGs können routinemäßig in Forschungslabors hergestellt werden. Um ehrlich zu sein, waren wir überrascht, dass es bei den CD-Messungen für einzelne Nanostrukturen so gut funktioniert hat.

Ein weiterer wichtiger Aspekt der CD-Spektroskopie an einzelnen Nanostrukturen ist die Interpretation der Daten und die Gewinnung von 3D-Strukturinformationen aus dem Inneren der Probe. Die Arbeit untersuchte einen speziellen Fall, gekoppelte plasmonische Nanostäbchen, und zeigte, dass die geometrischen Parameter explizit mit den spektralen Merkmalen in Verbindung stehen. Gleichzeitig wiesen die Wissenschaftler darauf hin, dass die Interpretation des Spektrums sehr viel komplizierter sein kann:

"Das CD-Spektrum einer einzelnen Nanostruktur unterscheidet sich stark vom Ergebnis von Ensembles. Das Spektrum hängt nicht nur vom Inneren der Nanostruktur ab, sondern auch von ihrer Ausrichtung sowie von den detaillierten Anregungs- und Beobachtungsgeometrien. Um die Komplexität vollständig zu verstehen, sind umfassendere Theorien erforderlich. Daran arbeiten wir derzeit."

Schließlich ist das polarisationsdispersive CD-Spektrometer dank der nahezu einheitlichen Beugungseffizienz des LCPG ein perfektes Werkzeug für Messungen von schwachen Signalen, z.B. der zirkular polarisierten Lumineszenz oder Raman-Streuungen von einzelnen Nanostrukturen. "Neben den plasmonischen Nanostrukturen haben wir das polarisationsdispersive Bildgebungsspektrometer auch mit der Lumineszenz einzelner Quantenpunkte getestet, und das System funktioniert perfekt. Wir glauben, dass es sogar in der Lage ist, Einzelmolekül-CD-Messungen durchzuführen. Das ist unser großes Ziel!", so Prof. Zhang.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Changchun Institute of Optics, Fine Mechanics and Physics

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
Mehr über Changchun Institute of OpticsFine Mechanics and Physics