26.11.2021 - Universität Hamburg

Neue Mikroskopie-Technik für die Quantensimulation

Gänzlich neue Bereiche erforschen

Forschende vom Institut für Laserphysik der Universität Hamburg haben eine neue Technik für die Quantengasmikroskopie entwickelt, die nun auch die Abbildung dreidimensionaler Quantensysteme ermöglicht. Im Fachmagazin Nature berichten sie über die neue Methode, mit der sich gänzlich neue Bereiche erforschen lassen.

In der Quantensimulation studieren Forschende ein kontrolliertes Quantensystem im Labor, um die Physik eines anderen, weniger kontrollierten Systems zu verstehen. Z.B. verwendet man ultrakalte Atome, die in Stehwellen aus Laserlicht gefangen sind, um die Physik der Elektronen im Festkörper nachzubilden und neue Einsichten in deren Quantenphasen zu gewinnen. Neben der kontrollierten Präparation des Systems ist dabei auch die Abbildung entscheidend. So erlauben Quantengasmikroskope die Detektion sämtlicher Teilchen des Quantensystems und damit Zugang zu beliebigen Korrelationsfunktionen zur Charakterisierung des Zustands. Diese Technologie basiert auf der optischen Auflösung der Gitterplätze mit einem Abstand von typischerweise einem halben Mikrometer und war daher bislang durch die Tiefenschärfe auf zweidimensionale Systeme beschränkt.

In der neuen Methode der Forscher um Dr. Christof Weitenberg und Prof. Klaus Sengstock, die beide auch im Exzellenzcluster „CUI: Advanced Imaging of Matter“ forschen, wird dies nun überwunden und die Auflösung auch von dreidimensionalen Systemen möglich. Dazu verwenden die Wissenschaftler sogenannte Materiewellen-Optik, d.h. eine Vergrößerung der Dichteverteilung der ultrakalten Atome selbst um einen Faktor von bis zu 90. Die optische Abbildung der Atome nach dieser Vergrößerung ist dann einfach möglich ohne Limitierung von Beugung oder Tiefenschärfe. Die Materiewellen-Optik basiert auf einer Linse in Form einer harmonischen Falle, die für eine Viertel-Periode angeschaltet wird, und einer anschließenden freien Expansion der Atome. Beide Prozesse führen zu einer Transformation zwischen Ortsraum und Impulsraum und in Kombination zu der vergrößernden Abbildung.

Die Forscher nutzen die neue Technik, um Bose-Einstein Kondensate aus ultrakalten Rubidium Atomen in einem optischen Gittern zu studieren. So gelingt ihnen eine besonders genaue Vermessung des Phasenübergangs in das Bose-Einstein Kondensat. Als nächstes wollen sie die neue Mikroskopie-Technik weiterentwickeln. So sollte es möglich sein, in einem Regime von wenigen Atomen pro Gitterplatz sämtliche Atome einzeln nachzuweisen. Darüber hinaus lassen sich durch Modifikation der Materiewellen-Optik neben der Dichte auch die Kohärenzeigenschaften des Systems räumlich aufgelöst vermessen. Luca Asteria, der die Technik mit seinen Kollegen entwickelt hat, erklärt: „Mit dieser Mikroskopie-Technik können wir völlig neue Regime erforschen, die vorher nicht zugänglich waren."

Fakten, Hintergründe, Dossiers
  • Quantengasmikroskopie
  • Quantensimulationen
  • Quantensysteme
  • ultrakalte Atome
  • Bose-Einstein-Kondensaten
Mehr über Uni Hamburg
  • News

    AIMe – Ein Standard für Künstliche Intelligenz in der Biomedizin

    Ein internationales Forschungsteam mit Beteiligten mehrerer Universitäten hat ein standardisiertes Register für die Arbeit mit Künstlicher Intelligenz (KI) in der Biomedizin vorgeschlagen, um die Reproduzierbarkeit der Ergebnisse zu verbessern und Vertrauen in die Benutzung von KI-Algorithm ... mehr

    Korkenzieher-Laser sortiert Spiegelmoleküle

    Viele der molekularen Bausteine des Lebens gibt es in zwei spiegelbildlichen Versionen. Obwohl scheinbar identisch, können diese beiden sogenannten Enantiomere ein völlig unterschiedliches chemisches Verhalten aufweisen – eine Tatsache, die große Auswirkungen auf unser tägliches Leben hat. ... mehr

    Happy hour für die zeitaufgelöste Kristallographie

    Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische ... mehr