Man muss sehr genau hinsehen, um exakt zu verstehen, welche Prozesse an den Oberflächen von Katalysatoren ablaufen. Bei festen Katalysatoren handelt es sich oft um fein strukturierte Materialien aus winzigen Kristallen. Es gibt verschiedene Arten der Mikroskopie, mit denen man die chemische ... mehr
Wie sauer sind Atome?
Chemische Eigenschaften von Oberflächen genau verstehen und verbessern
Der Säuregrad von Molekülen lässt sich leicht bestimmen. Bei Atomen auf einer Oberfläche war das bisher nicht möglich. Mit einer neuen Mikroskopietechnik der TU Wien ist das nun gelungen.
Wie sauer oder basisch eine Substanz ist, bestimmt ganz maßgeblich ihr chemisches Verhalten. Entscheidend dafür ist die sogenannte Protonenaffinität. Sie gibt an, wie leicht ein Molekül ein einzelnes Proton annimmt oder abgibt. Bei einer Flüssigkeit ist das leicht zu messen, bei Oberflächen war das bisher aber nicht möglich. Das Problem daran ist, dass auf einer Oberfläche unterschiedliche Atome sitzen können, mit ganz unterschiedlicher Protonenaffinität.
An der TU Wien gelang es nun, diese wichtige physikalische Größe erstmals experimentell zugänglich zu machen: Mit einem speziell modifizierten Rasterkraftmikroskop kann man die Protonenaffinität einzelner Atome untersuchen. Mit dieser Methode wird es nun auch möglich, Katalysatoren auf atomarer Skala gezielt zu analysieren.
Präzision statt Mittelwert
„Alle bisherigen Messungen des Säuregrades von Oberflächen hatten ein ganz wesentliches Problem“, sagt Prof. Ulrike Diebold vom Institut für Angewandte Physik der TU Wien. „Wenn unterschiedliche Atome auf der Oberfläche sitzen, die sich chemisch unterschiedlich verhalten, dann konnte man immer nur einen Mittelwert messen.“
Man wusste nicht, welches der Atome in welchem Ausmaß zum Ablauf chemischer Reaktionen beiträgt, und so ließ sich aus den Messergebnissen auch nicht ableiten, wie man die Oberflächen auf atomarer Skala anpassen muss, um bestimmte chemische Reaktionen zu begünstigen. Doch genau das ist notwendig, etwa wenn man nach effektiveren Katalysatoren für die Wasserstoffproduktion sucht.
„Wir analysierten Oberflächen aus Indiumoxid. Sie sind besonders interessant, denn dort gibt es an der Oberfläche gleich fünf unterschiedliche Arten von OH-Gruppen mit unterschiedlichen Eigenschaften“, sagt Margareta Wagner, die diese Messungen im Labor von Prof. Diebold durchgeführt hat.
Mit einem speziellen Trick gelang es, diese OH-Gruppen einzeln zu untersuchen: Man platziert eine einzelne OH-Gruppe an der Spitze eines Rasterkraftmikroskops. Diese Spitze kann man dann ganz gezielt über einem bestimmten Atom der Oberfläche platzieren. Zwischen der OH-Gruppe der Spitze und der OH-Gruppe direkt darunter auf der Indiumoxid-Oberfläche wirkt eine Kraft, und diese Kraft hängt empfindlich vom Abstand ab.
„Wir variieren den Abstand zwischen Spitze und Oberfläche und messen, wie sich die Kraft dadurch ändert“, erklärt Margareta Wagner. „So erhalten wir für jede OH-Gruppe auf der Materialoberfläche eine charakteristische Kraftkurve.“ Der Verlauf dieser Kraftkurve gibt Auskunft darüber, wie gut die jeweiligen Sauerstoffatome der Indiumoxidoberfläche Protonen festhalten – beziehungsweise, wie leicht sie Protonen abgeben.
Um daraus einen konkreten Wert für die Protonenaffinität zu erhalten, waren noch theoretische Arbeiten nötig, die von Bernd Meyer an der Friedrich-Alexander-Universität Erlangen-Nürnberg durchgeführt wurden. In aufwändigen Computersimulationen konnte gezeigt werden, wie sich die Kraftkurve des Rasterkraftmikroskops auf recht einfache und präzise Weise in jene Größen übersetzen lässt, die man in der Chemie benötigt.
Nanostruktur bestimmt die Qualität von Katalysatoren
„Für die Weiterentwicklung von Katalysatoren ist das ganz entscheidend“, sagt Bernd Meyer. „Wir wissen, dass Atome derselben Atomsorte sich ganz unterschiedlich verhalten können, je nachdem, welche atomaren Nachbarn sie haben und auf welche Weise sie in die Oberfläche eingebaut sind.“ So kann es etwa einen großen Unterschied machen, ob die Oberfläche perfekt glatt ist oder ob sie Stufen auf atomarer Skala aufweist. An solchen Stufenkanten sitzen Atome mit einer kleineren Zahl an Nachbarn, und sie können möglicherweise chemische Reaktionen deutlich verbessern oder verschlechtern.
„Mit unserer funktionalisierten Rasterkraftmikroskopspitze können wir solchen Fragen nun erstmals präzise nachgehen“, sagt Ulrike Diebold. „Damit ist man hier nicht mehr auf Versuch und Irrtum angewiesen, sondern kann chemische Eigenschaften von Oberflächen genau verstehen und verbessern.“
-
News
Chemielabor auf einem Chip analysiert Flüssigkeiten in Echtzeit
An der TU Wien wurde ein Infrarot-Sensor entwickelt, der in Sekundenbruchteilen Inhaltsstoffe von Flüssigkeiten detektiert. Was machen die Moleküle gerade im Reagenzglas? In der chemischen Technologie ist es oft wichtig, exakt zu messen, wie sich die Konzentration bestimmter Substanzen verä ... mehr
Die Elektronen-Zeitlupe: Wie reagieren verschiedene Materialien auf den Einschlag von Ionen?
Wenn Ionen ein Material durchdringen, laufen hochkomplexe Prozesse ab – so schnell, dass man sie bisher kaum analysieren konnte. Aber durch ausgeklügelte Messungen gelang das nun. Wie reagieren verschiedene Materialien auf den Einschlag von Ionen? Das ist eine Frage, die in vielen Forschung ... mehr
- 1Start von Revvity: Ein Unternehmen, das Innovationen von der Entdeckung bis zur Heilung vorantreibt
- 2Verborgener RNA-Reparaturmechanismus beim Menschen entdeckt
- 3Ultralange Eiweiss-Fasern geben Hinweise für ein Demenzrisiko
- 4Röntgenbildgebung erfasst flüchtige Defekte in Natrium-Ionen-Batterien
- 5Elektronische Nasen erschnüffeln flüchtige organische Verbindungen
- 6Weltkleinstes Impedanzspektroskopie-System in Form einer Pille findet Schwachstellen in Maschinen und Menschen
- 7KI prognostiziert zukünftigen Bauchspeicheldrüsenkrebs
- 8Infektion mit Erkältungs-Coronaviren kann breite Kreuzimmunität gegen SARS-CoV-2-Proteine auslösen
- 9Verder Gruppe übernimmt Spezialisten für Partikelcharakterisierung
- 10Steinzeit-Moleküle wieder zum „Leben“ erweckt
- Garnelen aus "Findet Nemo" könnten helfen, Ihr Weißbrot weiß zu halten
- Innovative Methode ermöglicht schonendes Röntgen empfindlicher biologischer ...
- Für kürzere Zulassungszeiten: Neues Verfahren simuliert in 15 Minuten die Ze ...
- Nikotin und Antidepressiva in antarktischen Gewässern gefunden
- Elektronische Nasen erschnüffeln flüchtige organische Verbindungen
- Künstliche Intelligenz könnte Therapie bei Lymphdrüsenkrebs verbessern
- Hirnmetastasen bei Hautkrebs: Wichtige grundlegende Mechanismen entschlüsselt
- Dem Ursprung komplexer Lebewesen auf der Spur
- Wachstum von Nanolöchern dank Heliumstreuung erstmals sichtbar
- Neuer Gebärmutterhalskrebs-Test erkennt Krebsvorstufen Jahre im Voraus