22.03.2021 - Max-Planck-Institut für biophysikalische Chemie

Neue Mikroskopie-Methode löst Fluoreszenzmoleküle nanometergenau auf

Wissenschaftler um Stefan Hell vom Göttinger Max-Planck-Institut (MPI) für biophysikalische Chemie und dem Heidelberger MPI für medizinische Forschung haben eine neue Lichtmikroskopie-Methode entwickelt, MINSTED genannt. Sie trennt fluoreszenzmarkierte Details mit molekularer Schärfe. Für Nobelpreisträger Hell schließt sich damit ein Kreis.

„Vor gut 20 Jahren haben wir mit der STED-Mikroskopie die Beugungsgrenze des Lichts in der Fluoreszenz-Lichtmikroskopie grundlegend durchbrochen. Das galt bis dahin als unmöglich,“ so Hell. „Damals haben wir geträumt: STED soll eines Tages so gut werden, dass man damit einzelne Moleküle trennen kann, die nur ein paar Nanometer voneinander entfernt sind. Jetzt ist uns das gelungen.“ Das STED-Prinzip kam damals einer Revolution in der Lichtmikroskopie gleich. Dafür erhielt Hell 2014 den Nobelpreis für Chemie.

In seiner ursprünglichen Fassung erreicht die STED-Mikroskopie eine Trennschärfe von bis zu 20 bis 30 Nanometern (Millionstel Millimeter) und ist damit etwa zehn Mal schärfer als die bis dahin verfügbaren Lichtmikroskope. 2016 konnten Hell und seine Mitarbeiter die Auflösung noch einmal um das Zehnfache steigern: Für die sogenannte MINFLUX-Nanoskopie kombinierten sie ein Element aus dem STED-Prinzip mit einem aus einer anderen Mikroskopie-Technik, PALM/STORM, und erreichten so erstmals eine Trennschärfe von wenigen Nanometern. MINFLUX kann Fluoreszenzmoleküle auf molekularen Skalen sichtbar machen – schärfer geht es nicht mehr.

Eine ganze Familie von Fluoreszenzmikroskopen

MINFLUX wird aber nicht die einzige molekular auflösende Methode bleiben, sondern verkörpert nur das erste Beispiel für eine neue Familie von Fluoreszenzmikroskopen, die bis auf molekulare Skalen vordringen können – davon war Hell überzeugt. Mit MINSTED liefern seine Mitarbeiter und er jetzt den Beweis dafür. Wie der Name schon sagt, trägt MINSTED noch mehr als MINFLUX vom ursprünglichen STED-Prinzip in sich. „Und das bringt Vorteile,“ sagt Michael Weber, Doktorand in Hells Labor. „Es erreicht wie MINFLUX molekulare Auflösung, aber das Hintergrundrauschen ist geringer. Hinzu kommt, dass man die Auflösung von 200 Nanometern bis hinunter zur Molekülgröße – 1 Nanometer – nun fast stufenlos einstellen kann.“

Mit MINSTED knüpft Hell so an seinen gut 20 Jahre zurückliegenden Durchbruch mit STED an und schöpft das volle Potenzial dieser Technik aus. „Mikroskopie auf molekularer Skala ist somit auf eine breite physikalische Basis gestellt. Es ist zu erwarten, dass MINSTED und MINFLUX grundlegende Verfahren werden, die in den Lebenswissenschaften vielfach Anwendung finden“, so der Physiker.

Das Leuchten von Molekülen an- und ausschalten

STED erreichte das zuvor Unerreichte – weniger als 200 Nanometer voneinander entfernte Moleküle getrennt zu erfassen – mit einem Trick: benachbarte fluoreszierende Moleküle werden nacheinander an- und ausgeschaltet. Dafür schickt das STED-Mikroskop einem die Moleküle anregenden Laserstrahl einen zweiten hinterher, den sogenannten STED-Strahl, der die Moleküle am Fluoreszieren hindert. Der STED-Strahl hat aber in der Mitte ein „Loch“; er ist also Donut-förmig. Nur die Moleküle in der Mitte dieses Donutstrahls können somit leuchten. Daher weiß man immer, wo sich die leuchtenden Moleküle befinden. STED erreicht in der Praxis allerdings keine molekulare Auflösung, weil sich der Donutstrahl, der das Leuchten unterdrückt, nicht so stark machen lässt, dass nur noch ein einziges Molekül ins Loch passt.

Deshalb werden bei MINSTED die Fluoreszenzmoleküle erst einmal vereinzelt und räumlich verstreut ein- und ausgeschaltet, und zwar nicht mit dem STED-Donutstrahl sondern über einen photochemischen Schaltprozess. Den STED-Donutstrahl benutzt man aber dazu, die Fluoreszenzmoleküle einzeln zu orten. Dabei dient sein Loch als Referenzpunkt. „Fällt das Loch mit dem Molekül zusammen, so leuchtet dieses am stärksten und man weiß genau, wo es ist. Denn die Position des STED-Donutstrahls ist elektronisch gesteuert und damit genau bekannt,“ erklärt Marcel Leutenegger, Postdoktorand in Hells Abteilung. „Deshalb tasten wir uns mit dem Donutstrahl kreisend an die Moleküle heran und können sie so mit einer Genauigkeit von 1 bis 3 Nanometern – also Molekülgröße – orten. In Verbindung mit dem photochemischen Ein- und Ausschalten wird die Auflösung molekular.“

Max-Planck-Institut für biophysikalische Chemie

News weiterempfehlen PDF Ansicht / Drucken

Teilen bei

Fakten, Hintergründe, Dossiers
  • Stefan Hell
Mehr über MPI für biophysikalische Chemie
  • News

    Kristallstrukturen in Super-Zeitlupe

    Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern. Dieses Prinzip ermöglicht heute weitverbreitete Technologien wie die wiederbeschreibbare DVD. Die zugrundeliegenden Prozesse laufen allerdings häufig unvorstellbar schnell und auf so kleinen Läng ... mehr

    Auflösungsweltrekord in der Kryo-Elektronenmikroskopie

    Eine entscheidende Auflösungsgrenze in der Kryo-Elektronenmikroskopie ist geknackt. Holger Stark und sein Team am Max-Planck-Institut (MPI) für biophysikalische Chemie haben zum ersten Mal einzelne Atome in einer Proteinstruktur beobachtet und die bisher schärfsten Bilder mit dieser Methode ... mehr

    Proteine ganz nah

    Die von Nobelpreisträger Stefan Hell und seinem Team entwickelte MINFLUX-Nanoskopie ermöglicht, fluoreszierende Moleküle mit Licht getrennt abzubilden, die nur ein paar Nanometer (millionstel Millimeter) voneinander entfernt sind. Diese Technik ist damit hundertmal schärfer als die herkömml ... mehr

Mehr über MPI für medizinische Forschung
Mehr über Max-Planck-Gesellschaft
  • News

    MaxDIA – Proteomik auf dem nächsten Level

    Die Proteomik produziert enorme Datenmengen, deren Analyse und Interpretation sehr komplex sein kann. Die kostenlose Software-Plattform MaxQuant hat sich in den letzten 13 Jahren als äußerst hilfreich für die Datenanalyse in der Shotgun-Proteomik erwiesen. Nun stellen Jürgen Cox, Gruppenlei ... mehr

    Wie Ethan-fressende Mikroben ihre Lieblingsspeise aufnehmen

    An heißen Quellen in der Tiefsee leben Mikroorganismen, die sich von Ethan ernähren. Sie wurden kürzlich von Wissenschaftlern des Max-Planck-Instituts für Marine Mikrobiologie entdeckt. Jetzt haben die Forschenden aus Bremen zusätzlich einen wichtigen Baustein in der mikrobiellen Verwertung ... mehr

    Wie eine Corona-Infektion Blutzellen langfristig verändert

    Mithilfe der Echtzeit-Verformungszytometrie konnten Forscher des Max-Planck-Zentrums für Physik und Medizin in Erlangen erstmals zeigen: Durch eine Covid-19-Erkrankung verändern sich Größe und Steifigkeit roter und weißer Blutkörperchen deutlich – zum Teil über Monate hinweg. Diese Ergebnis ... mehr