23.03.2020 - Friedrich-Schiller-Universität Jena

Neue Methode zur Optimierung der plasmonengestützten Spektroskopie

Entwirren der optischen Parameter

Für die Erforschung des Nanobereichs weit über die optische Auflösungsgrenze hinaus ist die spitzenverstärkte Raman-Spektroskopie (TERS) weithin als eine wesentliche, aber noch in der Entwicklung befindliche Technik anerkannt. Mit dieser markerfreien spektroskopischen Methode gewinnen Wissenschaftler Einblicke in die strukturelle und chemische Zusammensetzung von Oberflächen mit einer Auflösung im Nanobereich, die mit anderen Methoden nicht zugänglich sind. Beispiele, bei denen solche Spektroskopien mit nanoskaliger Auflösung entscheidend sind, sind Strukturuntersuchungen, von neuartigen Materialien (z.B. Diamantschichten, 2D-Materialien usw.), von Proteinaggregaten, die als Auslöser von Krankheiten wie Diabetes Typ II oder Alzheimer oder sogar von katalytischen Reaktionen am Arbeitsplatz diskutiert werden. Das mangelnde Verständnis der Wissenschaftler für die entscheidenden Parameter der eigentlichen Sonde schränkt jedoch das Potenzial von TERS als benutzerfreundliches Analysewerkzeug noch immer ein. Bis jetzt ist es den Wissenschaftlern nicht gelungen, die grundlegendsten experimentellen Parameter wie die Oberflächenplasmonenresonanz der Spitze, die Erwärmung aufgrund des Temperaturanstiegs im Nahfeld und die Verbindung zur räumlichen Auflösung zu entschlüsseln.

In einer neuen Veröffentlichung in "Light: Light: Science & Application" stellt ein Forscherteam aus Jena nun die erste zugängliche Methode vor, mit der bisher unerreichte Einblicke in die plasmonische Aktivität eines einzelnen Nanopartikels während eines typischen TERS-Experiments gewonnen werden können. Prof. Volker Deckert vom Leibniz-Institut für Photonische Technologie, Jena, und Dr. Marie Richard-Lacroix von der Friedrich-Schiller-Universität Jena schlagen eine einfache und rein experimentelle Methode vor, um die Plasmonenresonanz und die Nahfeldtemperatur zu bestimmen, die ausschließlich von den Molekülen erfahren werden, die direkt zum TERS-Signal beitragen. Unter Verwendung von Standard-TERS-Experimentiergeräten bewerten die Wissenschaftler die detaillierte optische Nahfeldreaktion sowohl auf molekularer Ebene als auch als Funktion der Zeit, indem sie gleichzeitig die Stokes- und Anti-Stokes-Spektralintensitäten sondieren. Dies ermöglicht ihnen, die optischen Eigenschaften jeder einzelnen TERS-Spitze während der Messung zu charakterisieren.

"Die vorgeschlagene Methode könnte ein wichtiger Schritt sein, um die Nutzbarkeit von TERS im täglichen Betrieb zu verbessern", erklärt Prof. Deckert. "Die tatsächlichen Bedingungen, denen die Moleküle von einem Experiment zum nächsten unterworfen werden, können nun direkt, in Echtzeit und im Probenmaßstab untersucht und optimiert werden", erklärt Prof. Deckert. Dies ist besonders relevant, wenn es darum geht, biologische Proben wie z.B. Proteine, die keine hohen Temperaturen vertragen, zu untersuchen.

"Nach unserem besten Wissen eröffnet keine andere zugängliche Methodik den Zugang zu einer solchen Fülle von Informationen über die plasmonische Aktivität während eines typischen TERS-Experiments", sagt Dr. Richard-Lacroix.

"Wir glauben, dass diese Methodik dazu beitragen wird, die Genauigkeit der theoretischen Modelle zu verbessern und jede experimentelle plasmonische Untersuchung und die Anwendung von TERS im Bereich der Thermometrie im Nanobereich zu erleichtern", sehen die Wissenschaftler voraus.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
Mehr über Uni Jena
  • News

    Zellen mit Licht steuern: „Ein neues Werkzeug für die Biologie“

    Die Wirkung von Medikamenten mit Licht ein- und auszuschalten, damit beschäftigt sich die Photopharmakologie. Nun ist es Wissenschaftsteams aus Jena, München und New York erstmals gelungen, auf diesem Weg einen Bestandteil der Zellen zu steuern, der bislang als unerreichbar galt. Überall vo ... mehr

    Synapsen in 3D

    Unser Gehirn besteht aus unzähligen Nervenzellen, die Signale von einer Zelle zur nächsten weiterleiten. Einen Schlüssel, um zu verstehen, wie unser Gedächtnis funktioniert, liefern die Verbindungen zwischen diesen Zellen, die Synapsen. Einem amerikanischen Forscherteam in Zusammenarbeit mi ... mehr

    Dem HI-Virus auf der Spur

    Einem internationalen Forscherteam unter Federführung von Dr. Cyril Favard und Dr. Delphine Muriaux vom Forschungsinstitut für Infektionskrankheiten in Montpellier in Zusammenarbeit mit Prof. Dr. Christian Eggeling von der Friedrich-Schiller-Universität Jena, vom Leibniz-Institut für Photon ... mehr

Mehr über IPHT
  • News

    Synapsen in 3D

    Unser Gehirn besteht aus unzähligen Nervenzellen, die Signale von einer Zelle zur nächsten weiterleiten. Einen Schlüssel, um zu verstehen, wie unser Gedächtnis funktioniert, liefern die Verbindungen zwischen diesen Zellen, die Synapsen. Einem amerikanischen Forscherteam in Zusammenarbeit mi ... mehr

    Dem HI-Virus auf der Spur

    Einem internationalen Forscherteam unter Federführung von Dr. Cyril Favard und Dr. Delphine Muriaux vom Forschungsinstitut für Infektionskrankheiten in Montpellier in Zusammenarbeit mit Prof. Dr. Christian Eggeling von der Friedrich-Schiller-Universität Jena, vom Leibniz-Institut für Photon ... mehr

    Kinobilder aus lebenden Zellen

    Um Zellen bei der Arbeit zu beobachten, müssen Forscher ein physikalisches Gesetz aushebeln. Eine der schnellsten Techniken, um die Auflösungsgrenze der klassischen Lichtmikroskopie zu überwinden, ist die hochauflösende strukturierte Beleuchtungsmikroskopie. Sie macht Details sichtbar, die ... mehr