23.03.2020 - Friedrich-Schiller-Universität Jena

Neue Methode zur Optimierung der plasmonengestützten Spektroskopie

Entwirren der optischen Parameter

Für die Erforschung des Nanobereichs weit über die optische Auflösungsgrenze hinaus ist die spitzenverstärkte Raman-Spektroskopie (TERS) weithin als eine wesentliche, aber noch in der Entwicklung befindliche Technik anerkannt. Mit dieser markerfreien spektroskopischen Methode gewinnen Wissenschaftler Einblicke in die strukturelle und chemische Zusammensetzung von Oberflächen mit einer Auflösung im Nanobereich, die mit anderen Methoden nicht zugänglich sind. Beispiele, bei denen solche Spektroskopien mit nanoskaliger Auflösung entscheidend sind, sind Strukturuntersuchungen, von neuartigen Materialien (z.B. Diamantschichten, 2D-Materialien usw.), von Proteinaggregaten, die als Auslöser von Krankheiten wie Diabetes Typ II oder Alzheimer oder sogar von katalytischen Reaktionen am Arbeitsplatz diskutiert werden. Das mangelnde Verständnis der Wissenschaftler für die entscheidenden Parameter der eigentlichen Sonde schränkt jedoch das Potenzial von TERS als benutzerfreundliches Analysewerkzeug noch immer ein. Bis jetzt ist es den Wissenschaftlern nicht gelungen, die grundlegendsten experimentellen Parameter wie die Oberflächenplasmonenresonanz der Spitze, die Erwärmung aufgrund des Temperaturanstiegs im Nahfeld und die Verbindung zur räumlichen Auflösung zu entschlüsseln.

In einer neuen Veröffentlichung in "Light: Light: Science & Application" stellt ein Forscherteam aus Jena nun die erste zugängliche Methode vor, mit der bisher unerreichte Einblicke in die plasmonische Aktivität eines einzelnen Nanopartikels während eines typischen TERS-Experiments gewonnen werden können. Prof. Volker Deckert vom Leibniz-Institut für Photonische Technologie, Jena, und Dr. Marie Richard-Lacroix von der Friedrich-Schiller-Universität Jena schlagen eine einfache und rein experimentelle Methode vor, um die Plasmonenresonanz und die Nahfeldtemperatur zu bestimmen, die ausschließlich von den Molekülen erfahren werden, die direkt zum TERS-Signal beitragen. Unter Verwendung von Standard-TERS-Experimentiergeräten bewerten die Wissenschaftler die detaillierte optische Nahfeldreaktion sowohl auf molekularer Ebene als auch als Funktion der Zeit, indem sie gleichzeitig die Stokes- und Anti-Stokes-Spektralintensitäten sondieren. Dies ermöglicht ihnen, die optischen Eigenschaften jeder einzelnen TERS-Spitze während der Messung zu charakterisieren.

"Die vorgeschlagene Methode könnte ein wichtiger Schritt sein, um die Nutzbarkeit von TERS im täglichen Betrieb zu verbessern", erklärt Prof. Deckert. "Die tatsächlichen Bedingungen, denen die Moleküle von einem Experiment zum nächsten unterworfen werden, können nun direkt, in Echtzeit und im Probenmaßstab untersucht und optimiert werden", erklärt Prof. Deckert. Dies ist besonders relevant, wenn es darum geht, biologische Proben wie z.B. Proteine, die keine hohen Temperaturen vertragen, zu untersuchen.

"Nach unserem besten Wissen eröffnet keine andere zugängliche Methodik den Zugang zu einer solchen Fülle von Informationen über die plasmonische Aktivität während eines typischen TERS-Experiments", sagt Dr. Richard-Lacroix.

"Wir glauben, dass diese Methodik dazu beitragen wird, die Genauigkeit der theoretischen Modelle zu verbessern und jede experimentelle plasmonische Untersuchung und die Anwendung von TERS im Bereich der Thermometrie im Nanobereich zu erleichtern", sehen die Wissenschaftler voraus.

Hinweis: Dieser Artikel wurde mit einem Computersystem ohne menschlichen Eingriff übersetzt. LUMITOS bietet diese automatischen Übersetzungen an, um eine größere Bandbreite an aktuellen Nachrichten zu präsentieren. Da dieser Artikel mit automatischer Übersetzung übersetzt wurde, ist es möglich, dass er Fehler im Vokabular, in der Syntax oder in der Grammatik enthält. Den ursprünglichen Artikel in Englisch finden Sie hier.

Fakten, Hintergründe, Dossiers
Mehr über Uni Jena
  • News

    Geschärfter Blick ins Innere von Halbleitern

    Bilder liefern Erkenntnisse. Was wir mit unseren eigenen Augen beobachten können, lässt uns verstehen. Das Blickfeld stetig zu erweitern, auch in Dimensionen, die dem bloßen Auge zunächst verborgen sind, treibt die Wissenschaft voran: Immer leistungsfähigere Mikroskope ermöglichen heute Ein ... mehr

    Smarte hauchdünne Nanoblätter fischen Proteine

    Eine Art Köder, um gezielt Proteinkomplexe aus Mischungen fischen zu können, hat ein interdisziplinäres Team aus Frankfurt und Jena entwickelt. Dank dieses „Köders“ ist das gewünschte Protein wesentlich schneller für die weitere Untersuchung im Elektronenmikroskop verfügbar. Diese neuartige ... mehr

    Zellen mit Licht steuern: „Ein neues Werkzeug für die Biologie“

    Die Wirkung von Medikamenten mit Licht ein- und auszuschalten, damit beschäftigt sich die Photopharmakologie. Nun ist es Wissenschaftsteams aus Jena, München und New York erstmals gelungen, auf diesem Weg einen Bestandteil der Zellen zu steuern, der bislang als unerreichbar galt. Überall vo ... mehr

Mehr über IPHT
  • News

    Alzheimer durch einen einfachen Augenscan erkennen?

    Alzheimer an den Augen erkennen, lange bevor die unheilbare Erkrankung ausbricht: Diesem Ziel ist ein europäisches Forschungsteam unter Beteiligung des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) einen Schritt näher gekommen. Mithilfe eines laserbasierten Verfahrens geling ... mehr

    Ein Mikroskop für alle

    Moderne Mikroskope, die biologische Prozesse sichtbar machen, kosten viel Geld, stehen in spezialisierten Laboren und erfordern hoch qualifiziertes Personal. Damit neue, kreative Ansätze für drängende wissenschaftliche Fragestellungen zu erforschen — zum Beispiel im Kampf gegen Infektionskr ... mehr

    Synapsen in 3D

    Unser Gehirn besteht aus unzähligen Nervenzellen, die Signale von einer Zelle zur nächsten weiterleiten. Einen Schlüssel, um zu verstehen, wie unser Gedächtnis funktioniert, liefern die Verbindungen zwischen diesen Zellen, die Synapsen. Einem amerikanischen Forscherteam in Zusammenarbeit mi ... mehr