Kriminalpuzzle zum Kiefernprachtkäfer

Forscher berechnen Empfindlichkeit eines natürlichen Sensors

Helmut Schmitz/Uni Bonn

Abb.1: Getrocknetes Exemplar des Schwarzen Kiefernprachtkäfers Melanophila acuminata (Sammlungsmaterial). Länge des Käfers 11 mm. Ansicht der linken Körperseite. Vorderes und mittleres Bein wurden entfernt, um den Blick auf das linke Infrarotorgan freizugeben (roter Pfeil). Am Grunde der kleinen Grube von ca. 0,3 x 0,15 mm liegt ein Feld von bis zu 90 kugelförmigen IR-Rezeptoren (s. Abb. 2). Balken 2 mm.

Helmut Schmitz/Uni Bonn

Abb.2: Rasterelektronenmikroskopische Aufnahme der kugelförmigen IR-Rezeptoren am Grunde eines IR-Grubenorgans. Die IR-Rezeptoren sind mit „salzstreuerartigen“ Ausführgängen von Wachsdrüsen vergesellschaftet, die beim lebenden Käfer ständig dünne Wachsfäden abgeben; wahrscheinlich, um die IR-Rezeptoren vor Luftströmungen und Verschmutzung zu schützen. Balken 0.02 mm.

24.05.2012: Kiefernprachtkäfer der Gattung Melanophila verfügen über ungewöhnliche Infrarotsensoren. Damit spüren sie offensichtlich auch aus großen Entfernungen Waldbrände auf, da ihre holzfressenden Larven sich nur in frisch verbrannten Bäumen entwickeln können. Seit langem rätselt die Wissenschaft darüber, wie sensitiv dieser biologische IR-Sensor wirklich ist. Mit kriminalistischen Indizienbeweisen kommen nun Wissenschaftler der Universität Bonn und des Forschungszentrums Jülich zu dem Schluss, dass der Sensor des Käfers wahrscheinlich sogar empfindlicher sein könnte als vom Menschen konstruierte ungekühlte Infrarotsensoren. Mit dem natürlichen Vorbild eröffnen sich neue Perspektiven zum Beispiel für Waldbrand-Frühwarnsysteme.

Kriminalfälle lassen sich oftmals nur mit Hilfe von Indizien lösen, die die Spezialisten wie ein Puzzle zusammenfügen und dann das Geschehene rekonstruieren. Ähnlich erging es Prof. Dr. Helmut Schmitz vom Institut für Zoologie der Universität Bonn und Dr. Herbert Bousack vom Peter Grünberg Institut am Forschungszentrum Jülich. Prof. Schmitz erforscht seit vielen Jahren den ausgeklügelten IR-Sensor von Prachtkäfern der Gattung Melanophila, mit dem diese sogenannten pyrophilen Insekten Waldbrände orten. Dabei handelt es sich um eine ganz besondere ökologische Nische: "Die Käferlarven fressen sich ungestört durchs tote Holz, weil sich der durch die große Hitze abgetötete Baum nicht mehr wehren kann und Fressfeinde in einem frischen Waldbrandgebiet kaum vorkommen", berichtet der Bonner Zoologe.

Die Forscher haben inzwischen das Funktionsprinzip des sogenannten photomechanischen Käfer-Infrarotsensors herausbekommen und mit Hilfe des Forschungszentrums caesar in Bonn und der Technischen Universität Dresden begonnen, dieses Vorbild der Natur technisch nachzubauen. Winzige Kutikulakugeln der Käfer-IR-Rezeptoren – mit rund 0,02 mm kleiner als der Durchmesser eines feinen Haares – sind mit Wasser gefüllt und absorbieren IR-Strahlung sehr gut. Durch die resultierende Erwärmung dehnt sich besonders das Wasser schlagartig aus – und diese Druckänderung wird durch hochempfindliche mechanosensitive Sinneszellen sofort wahrgenommen. "Allerdings war eine wichtige Frage immer noch unbeantwortet: Wie empfindlich ist der Sensor?", sagt Prof. Schmitz. Die Frage ließe sich am besten lösen, wenn Melanophila-Käfer auf Waldbrandsuche mit Minisendern ausgestattet würden. "Dann könnte man die Flugstrecke zum Brandgebiet nachvollziehen und aufgrund der Distanz die minimal notwendige Wärmestrahlung berechnen, durch die der Käfer angelockt wird", erläutert der Zoologe. Doch der Käfer ist mit ungefähr einem Zentimeter Länge zu klein, um einen Sender über viele Kilometer zu tragen.

Den findigen Forschern kam deshalb ein Ereignis in der Vergangenheit sehr gelegen: Im August 1925 brannte in Coalinga im US-Bundesstaat Kalifornien ein großes Öldepot lichterloh. "In Berichten aus dieser Zeit wird beschrieben, dass durch das Großfeuer massenhaft Kiefernprachtkäfer der Art Melanophila consputa angelockt wurden", führt Prof. Schmitz aus. Da sich der Unglücksort mitten im unbewaldeten California Central Valley befand, mussten die Käfer aus großer Distanz herangeflogen sein. Am Wahrscheinlichsten kamen sie aus den großen Waldbeständen der westlichen Gebirgsausläufer der Sierra Nevada in rund 130 Kilometer Entfernung, wo es in den beiden Vorjahren zu größeren Waldbränden gekommen war: "Auf solchen Brandflächen kommt es zu Massenvermehrung der Käfer, die dann nach dem Schlüpfen in den Sommermonaten der Folgejahre wiederum auf Waldbrandsuche gehen", sagt Prof. Schmitz. Eine rund 28 Kilometer zu den brennenden Öltanks entfernte Waldfläche in der nördlich gelegenen San Benito Mountain Natural Area erscheint als Herkunftsort der Kiefernprachtkäfer eher unwahrscheinlich, da in diesen Gebieten in den Jahren vor 1925 keine Waldbrände nachgewiesen wurden.

Der Ingenieur Dr. Herbert Bousack vom Peter Grünberg Institut des Forschungszentrums Jülich rechnete die Modelle zur Empfindlichkeit des Sensors. "Das Brandereignis in Coalinga eignet sich hervorragend für die Simulation", berichtet Dr. Bousack. Allerdings mussten erst mühsam viele Randbedingungen recherchiert werden – etwa die Größe des Feuers oder die Wetterverhältnisse. "Diese Daten waren mehr als 85 Jahre nach dem Brand schwer beizubringen." Für die mathematische Simulation nutzte der Ingenieur verschiedene Brandmodelle als Grundlage, wie sie auch bei der Risikoanalyse von Bränden in Tanklagern verwendet werden. "Wir haben diese technischen Richtlinien auf unsere Fragestellung hin angepasst und konnten damit auf einen gesicherten Erfahrungsschatz zurückgreifen", sagt der Ingenieur.

Das Ergebnis war erstaunlich: "Der Infrarotsensor von Melanophila-Käfern müsste nach unseren Berechnungen noch Signale unterhalb des thermischen Rauschens wahrnehmen können", berichtet Dr. Bousack. Offenbar bedient sich der Käfer der stochastischen Resonanz. "Diese Methode erlaubt es, dass schwache periodische Signale, die normalerweise vom Rauschen überlagert werden, detektiert werden können", erläutert der Ingenieur. Nach den Ergebnissen der Berechnungen nimmt der Sensor noch winzigste Wärmemengen wahr; in etwa vergleichbar mit der Energieauflösung von Radioteleskopen. "Unsere Simulationen und Berechnungen lassen es durchaus wahrscheinlich erscheinen, dass der Infrarotsensor von pyrophilen Melanophila-Käfern sensitiver ist, als aktuell auf dem Markt erhältliche ungekühlte Infrarotsensoren", fasst Prof. Schmitz das Ergebnis zusammen. "Weitere Anstrengungen für eine technische Umsetzung dieses natürlichen Vorbilds sind also erforderlich." Sie könnten etwa Waldbrand-Frühwarnsysteme revolutionieren.

Originalveröffentlichung:
Modelling a historic oil-tank fire allows an estimation of the sensitivity of the infrared receptors in pyrophilous Melanophila beetles, Online-Journal PLoS ONE

Mehr über Forschungszentrum Jülich
  • News

    Großgerät für hochempfindliche Proteinanalyse

    Am Biomolekularen NMR-Zentrum des Institute of Complex Systems in Jülich und des Instituts für Physikalische Biologie der Heinrich-Heine-Universität Düsseldorf ist ein neuartiges DNP-NMR-Spektrometer in Betrieb gegangen. Finanziert mit 2,6 Millionen Euro durch die Deutsche Forschungsgemeins ... mehr

    Einblicke in verborgene Proteinzustände

    Proteine erfüllen in allen Organismen lebenswichtige Aufgaben. Häufig verändern sie dabei ihre dreidimensionale Struktur, um mit verschiedenen Bindungspartnern in Aktion zu treten. Ein deutsch-französisches Forscherteam mit Jülicher Wissenschaftlern hat nun eine Methode entwickelt, die solc ... mehr

    Bedeutsames Rätsel der Atmosphärenchemie gelöst

    Schwebeteilchen in der Atmosphäre beeinflussen die Wolkenbildung, die Strahlungsbilanz der Erde und somit das Klima. Bislang war unklar, wie genau sich solche Aerosolteilchen aus den flüchtigen organischen Stoffen bilden, die natürlicherweise von Bäumen und anderen Pflanzen in die Luft abge ... mehr

Mehr über Universität Bonn
  • News

    Wie ergeht es einer einzelnen Netzhautzelle?

    Wissenschaftler der Universitäts-Augenklinik Bonn dringen in ein vollkommen neues Forschungsfeld vor: Sie entwickeln aus rund 1000 Einzelteilen ein Spezialmikroskop, das mithilfe eines Lasers einzelne Fotorezeptoren der Netzhaut im menschlichen Auge untersuchen und stimulieren kann. Davon v ... mehr

    Risikoscheu ist im Gehirn sichtbar

    Manche Menschen leben getreu dem Motto „no risk - no fun!“ und gehen kaum einem Risiko aus dem Weg. Andere verhalten sich deutlich vorsichtiger und setzen bei Kapitalanlagen und sonstigen Geschäften vor allem auf Sicherheit. Wissenschaftler der Universität Bonn untersuchten mit ihren Kolleg ... mehr

    Forscher sehen lebenden Zellen bei der Teilung zu

    Unter Federführung der Universität Bonn haben Wissenschaftler ein Verfahren entwickelt, das es erlaubt, lebenden Zellen bei der Zellteilung zuzusehen. Damit ist nun ein neues Werkzeug vorhanden, mit dem das Potenzial regenerativer Prozesse besser beurteilt werden kann. So lassen sich nach e ... mehr

Ihr Bowser ist nicht aktuell. Microsoft Internet Explorer 6.0 unterstützt einige Funktionen auf Chemie.DE nicht.