The inner lives of molecules


Paul Hockett

These are 3-D images of molecules in action.

Quantum mechanics rules. It dictates how particles and forces interact, and thus how atoms and molecules work -- for example, what happens when a molecule goes from a higher-energy state to a lower-energy one. But beyond the simplest molecules, the details become very complex.

"Quantum mechanics describes how all this stuff works," said Paul Hockett of the National Research Council of Canada. "But as soon as you go beyond the two-body problem, you can't solve the equations." So, physicists must rely on computer simulations and experiments.

Now, he and an international team of researchers from Canada, the U.K. and Germany have developed a new experimental technique to take 3-D images of molecules in action. This tool, he said, can help scientists better understand the quantum mechanics underlying bigger and more complex molecules.

The new method combines two technologies. The first is a camera developed at Oxford University, called the Pixel-Imaging Mass Spectrometry (PImMS) camera. The second is a femtosecond vacuum ultraviolet light source built at the NRC femtolabs in Ottawa.

Mass spectrometry is a method used to identify unknown compounds and to probe the structure of molecules. In most types of mass spectrometry, a molecule is fragmented into atoms and smaller molecules that are then separated by molecular weight. In time-of-flight mass spectrometry, for example, an electric field accelerates the fragmented molecule. The speed of those fragments depends on their mass and charge, so to weigh them, you measure how long it takes for them to hit the detector.

Most conventional imaging detectors, however, can't discern exactly when one particular particle hits. To measure timing, researchers must use methods that effectively act as shutters, which let particles through over a short time period. Knowing when the shutter is open gives the time-of-flight information. But this method can only measure particles of the same mass, corresponding to the short time the shutter is open.

The PImMS camera, on the other hand, can measure particles of multiple masses all at once. Each pixel of the camera's detector can time when a particle strikes it. That timing information produces a three-dimensional map of the particles' velocities, providing a detailed 3-D image of the fragmentation pattern of the molecule.

To probe molecules, the researchers used this camera with a femtosecond vacuum ultraviolet laser. A laser pulse excites the molecule into a higher-energy state, and just as the molecule starts its quantum mechanical evolution -- after a few dozen femtoseconds --another pulse is fired. The molecule absorbs a single photon, a process that causes it to fall apart. The PImMS camera then snaps a 3-D picture of the molecular debris.

By firing a laser pulse at later and later times at excited molecules, the researchers can use the PImMS camera to take snapshots of molecules at various stages while they fall into lower energy states. The result is a series of 3-D blow-by-blow images of a molecule changing states.

The researchers tested their approach on a molecule called C2F3I. Although a relatively small molecule, it fragmented into five different products in their experiments. The data and analysis software is available online as part of an open science initiative, and although the results are preliminary, Hockett said, the experiments demonstrate the power of this technique.

"It's effectively an enabling technology to actually do these types of experiments at all," Hockett said. It only takes a few hours to collect the kind of data that would take a few days using conventional methods, allowing for experiments with larger molecules that were previously impossible.

Then researchers can better answer questions like: How does quantum mechanics work in larger, more complex systems? How do excited molecules behave and how do they evolve?

"People have been trying to understand these things since the 1920s," Hockett said. "It's still a very open field of investigation, research, and debate because molecules are really complicated. We have to keep trying to understand them."

Facts, background information, dossiers
  • ultraviolet light
  • Fragmentation
  • imaging
  • PImMS
More about National Research Council of Canada
  • News

    Small, beautiful and additive-free

    The National Research Council Canada (NRC) recently helped Olympus to design and commercialize a CARS (Coherent Anti-stokes Raman Scattering) microscope. The new Olympus microscope is based on a femtosecond non-linear optical process called CARS, which stands for Coherent Anti-Stokes Raman ... more

More about American Chemical Society
  • News

    Dog's nose inspires new gas sensor materials

    It is well known that dogs have a better sense of smell than humans. For years, researchers have been trying to develop an artificial detector that is just as good as a canine's nose. Now, one group reports in ACS Nano that they were able to mimic a dog's sniffer with graphene-based nanoscr ... more

    Keychain detector could catch food allergens before it's too late

    For kids and adults with food allergies, a restaurant outing can be a fraught experience. Even when care is taken, freshly prepared or packaged meals can accidentally become cross-contaminated with an offending food and trigger a reaction. Now researchers report the development of a new por ... more

    New sensors could enable more affordable detection of pollution and diseases

    When it comes to testing for cancer, environmental pollution and food contaminants, traditional sensors can help. The challenges are that they often are bulky, expensive, non-intuitive and complicated. Now, one team reports in ACS Sensors that portable pressure-based detectors coupled with ... more

  • Videos

    The chemicals we leave behind

    The products we use every day leave behind chemical footprints. Learn how and why researchers are now studying those trails. Mass spectrometry is helping researchers learn more about our interactions with the everyday chemicals we use, such as DEET, caffeine, even medications. In this episo ... more

  • Events

    Unveiling the Mysteries Behind HPLC and GC Resolution: From Theory to Practice in 30 minutes

    High performance liquid chromatography, (HPLC) and Gas chromatography (GC) work by separating complex mixtures into individual compounds. In each process you need to separate in order to identify, quantify and purify, but without the separation, we’ve got nothing. Most chromatographers don’ ... more


    Forensic Toxicology: Cracking the Case with Chemistry

    On television, the forensics lab is able to produce results that can break a case in no time, but what it is like in the real world? Jason Schaff will be joining us to paint a more accurate picture of how chemists work to gather the facts and evidence that can be presented in court. Tune in ... more


    X-ray Crystallography in Drug Discovery

    Jon Mason and Miles Congreve from Heptares will describe what protein-ligand X-ray data can do for your medicinal chemistry project. How these data can be interpreted and used to influence both the strategic direction of the work and to drive the design of compounds for synthesis will be di ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE