Nerve gas litmus test could sense airborne chemical weapons

14-Mar-2012

Nerve gases are colorless, odorless, tasteless and deadly. While today's soldiers carry masks and other protective gear, they don't have reliable ways of knowing when they need them in time. That could change, thanks to a new litmus-like paper sensor made at the University of Michigan.

The paper strips are designed to change color from blue to pink within 30 second of exposure to trace amounts of nerve gas.

"To detect these agents now, we rely on huge, expensive machines that are hard to carry and hard to operate," said Jinsang Kim, an associate professor in the departments of Materials Science and Engineering, Chemical Engineering and Biomedical Engineering in addition to the program in Macromolecular Science and Engineering.

"We wanted to develop an equipment-free, motion-free, highly sensitive technology that uses just our bare eyes."

The new sensors combine a group of atoms from a nerve gas antidote with a molecule that changes color when it's under mechanical stress. The antidote's functional group binds to the nerve gas, and the resulting stress triggers the color-changing molecule to turn from blue to pink.

In their experiment, the researchers used a less toxic "nerve agent simulant" related to Sarin gas. Their sensors were able to detect its presence at a concentration of 160 parts per billion, which is five times less than the amount that would kill a monkey.

"We believe these paper strips would detect real and potent nerve gases faster and in even lower concentrations considering their high vapor pressure and more volatile properties," Kim said.

"It feels so gratifying when we, as scientists and engineers, can provide solutions to our society through research."

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Facts, background information, dossiers
  • Sarin
  • colorimetric tests
More about University of Michigan
  • News

    Precision medicine test helps guide breast cancer patients' chemotherapy decision

    One of the earliest widespread applications of precision medicine in cancer care is helping patients and physicians decide whether chemotherapy is needed, a new study finds. Researchers looked at a test available to help assess the risk of breast cancer recurrence and whether chemotherapy i ... more

    A more accurate sensor for lead paint

    A new molecular gel recipe developed at the University of Michigan is at the core of a prototype for a more accurate lead paint test. The test makes it easy to see whether a paint chip contains more than the regulated 5,000 parts per million of the poisonous metal that was banned from pigme ... more

    More ancient viruses lurk in our DNA than we thought

    Think your DNA is all human? Think again. And a new discovery suggests it's even less human than scientists previously thought. Nineteen new pieces of non-human DNA -- left by viruses that first infected our ancestors hundreds of thousands of years ago -- have just been found, lurking betwe ... more

  • Videos

    From Liquid To Gel: A New Test for Lead in Paint

    A new molecular gel recipe developed at the University of Michigan by Anne McNeil, Arthur F Thurnau Professor of Macromolecular Science, and is at the core of a prototype for a more accurate lead paint test.The new test is more clear and accurate than its counterparts. It consists of a vial ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE