Nerve gas litmus test could sense airborne chemical weapons

14-Mar-2012

Nerve gases are colorless, odorless, tasteless and deadly. While today's soldiers carry masks and other protective gear, they don't have reliable ways of knowing when they need them in time. That could change, thanks to a new litmus-like paper sensor made at the University of Michigan.

The paper strips are designed to change color from blue to pink within 30 second of exposure to trace amounts of nerve gas.

"To detect these agents now, we rely on huge, expensive machines that are hard to carry and hard to operate," said Jinsang Kim, an associate professor in the departments of Materials Science and Engineering, Chemical Engineering and Biomedical Engineering in addition to the program in Macromolecular Science and Engineering.

"We wanted to develop an equipment-free, motion-free, highly sensitive technology that uses just our bare eyes."

The new sensors combine a group of atoms from a nerve gas antidote with a molecule that changes color when it's under mechanical stress. The antidote's functional group binds to the nerve gas, and the resulting stress triggers the color-changing molecule to turn from blue to pink.

In their experiment, the researchers used a less toxic "nerve agent simulant" related to Sarin gas. Their sensors were able to detect its presence at a concentration of 160 parts per billion, which is five times less than the amount that would kill a monkey.

"We believe these paper strips would detect real and potent nerve gases faster and in even lower concentrations considering their high vapor pressure and more volatile properties," Kim said.

"It feels so gratifying when we, as scientists and engineers, can provide solutions to our society through research."

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Facts, background information, dossiers
  • Sarin
  • colorimetric tests
More about University of Michigan
  • News

    Google provides open source library for quantum chemistry

    Since physicists have been dealing with the theoretical description of molecules, the solving of quantum mechanical equations has been a major obstacle. This is supposed to be a thing of the past with the release of an open source based system. Google has introduced such a system to the pub ... more

    '5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's

    In research that could one day lead to advances against neurodegenerative diseases like Alzheimer's and Parkinson's, University of Michigan engineering researchers have demonstrated a technique for precisely measuring the properties of individual protein molecules floating in a liquid. Prot ... more

    Investigating kidney biomarkers to track lupus

    Lupus, a chronic autoimmune disease, can wreak havoc on an affected individual's body through inflammation, pain and even damage of the skin, joints and organs. To try to better understand how the disease begins and progresses, researchers at the University of Michigan investigated whether ... more

  • Videos

    From Liquid To Gel: A New Test for Lead in Paint

    A new molecular gel recipe developed at the University of Michigan by Anne McNeil, Arthur F Thurnau Professor of Macromolecular Science, and is at the core of a prototype for a more accurate lead paint test.The new test is more clear and accurate than its counterparts. It consists of a vial ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE