Nerve gas litmus test could sense airborne chemical weapons

14-Mar-2012

Nerve gases are colorless, odorless, tasteless and deadly. While today's soldiers carry masks and other protective gear, they don't have reliable ways of knowing when they need them in time. That could change, thanks to a new litmus-like paper sensor made at the University of Michigan.

The paper strips are designed to change color from blue to pink within 30 second of exposure to trace amounts of nerve gas.

"To detect these agents now, we rely on huge, expensive machines that are hard to carry and hard to operate," said Jinsang Kim, an associate professor in the departments of Materials Science and Engineering, Chemical Engineering and Biomedical Engineering in addition to the program in Macromolecular Science and Engineering.

"We wanted to develop an equipment-free, motion-free, highly sensitive technology that uses just our bare eyes."

The new sensors combine a group of atoms from a nerve gas antidote with a molecule that changes color when it's under mechanical stress. The antidote's functional group binds to the nerve gas, and the resulting stress triggers the color-changing molecule to turn from blue to pink.

In their experiment, the researchers used a less toxic "nerve agent simulant" related to Sarin gas. Their sensors were able to detect its presence at a concentration of 160 parts per billion, which is five times less than the amount that would kill a monkey.

"We believe these paper strips would detect real and potent nerve gases faster and in even lower concentrations considering their high vapor pressure and more volatile properties," Kim said.

"It feels so gratifying when we, as scientists and engineers, can provide solutions to our society through research."

The university is pursuing patent protection for the intellectual property, and is seeking commercialization partners to help bring the technology to market.

Original publication:

"Colorimetric Detection of Warfare Gases by Polydiacetylenes Toward Equipment-Free Detection."; Advanced Functional Materials.

Facts, background information, dossiers
  • Sarin
  • colorimetric tests
More about University of Michigan
  • News

    More ancient viruses lurk in our DNA than we thought

    Think your DNA is all human? Think again. And a new discovery suggests it's even less human than scientists previously thought. Nineteen new pieces of non-human DNA -- left by viruses that first infected our ancestors hundreds of thousands of years ago -- have just been found, lurking betwe ... more

    A noninvasive way to view insulin in pancreas

    "Scientists and doctors have wanted to know how much insulin a person has in their body, but haven't been able to know the exact amount without the patient being deceased and actually removing the pancreas," says Peter Arvan, division chief of Metabolism, Endocrinology & Diabetes at the Uni ... more

    Smart gas sensors for better chemical detection

    Portable gas sensors can allow you to search for explosives, diagnose medical conditions through a patient's breath, and decide whether it's safe to stay in a mine. These devices do all this by identifying and measuring airborne chemicals, and a new, more sensitive, smart model is under dev ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE