New software processes huge amounts of single-cell data

Comprehensive analysis of large gene-expression datasets

13-Feb-2018

Helmholtz Zentrum München

Visualization of gene expression patterns of murine brain cells generated with Scanpy.

Scientists from the Helmholtz Zentrum München have developed a program that is able to help manage enormous datasets. The software, named Scanpy, is a candidate for analyzing the Human Cell Atlas.

“It’s about analyzing gene-expression data of a large number of individual cells,” explains lead author Alex Wolf of the Institute of Computational Biology (ICB) at Helmholtz Zentrum München. He developed Scanpy together with his colleague Philipp Angerer in the Machine Learning Group of Prof. Dr. Dr. Fabian Theis. In addition to his position at Helmholtz Zentrum, Theis is also a professor of mathematical modelling of biological systems at the Technical University of Munich. “New technical advances generate several orders of magnitude more data with a correspondingly greater information content,” Theis says. “However, the historically evolved software infrastructure for gene-expression analysis simply wasn’t designed to cope with the new challenges. New analytic methods are therefore needed.”

The race for the Human Cell Atlas

According to Theis, a major international research project could also benefit from the software. A team of international scientists is compiling a reference database, called the Human Cell Atlas, which holds data on the gene activity of all human cell types. “For this project, and in a growing number of other projects in which databases are combined, it is important to have scalable software,” says Theis. It is therefore no surprise that Scanpy is currently a candidate for helping to analyze the Human Cell Atlas.

“The publication of Scanpy marks the first software that allows comprehensive analysis of large gene-expression datasets with a broad range of machine-learning and statistical methods,” explains Wolf, describing the achievement. “The software is already being used by a number of groups around the world, notably at the Broad Institute of Harvard University and the Massachusetts Institute of Technology, MIT.”

Technologically, the application is a trailblazing development: Whereas biostatistics programs are traditionally written in the programming language R, Scanpy is based on the Python language, the dominant language in the machine learning community. Another new feature is that graph-based algorithms lie at the heart of Scanpy. Unlike the usual approach of regarding cells as points in a coordinate system within gene-expression space, the algorithms use a graph-like coordinate system. Instead of characterizing a single cell by the expression value for thousands of genes, the system simply characterizes cells by identifying their closest neighbors – very much like the connections in social networks. In fact, to identify cell types, Scanpy uses the same algorithms as Facebook does for identifying communities.

Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH

Request information now

Recommend news PDF version / Print

Share on

Facts, background information, dossiers
More about Helmholtz Zentrum München
  • News

    New insight into the maturation of miRNAs

    An international research team led by Helmholtz Zentrum München, Technical University of Munich and the University of Edinburgh has used an integrated structural biological approach to elucidate the maturation of a cancer-causing microRNA in gene regulation. In the future, the authors hope ... more

    Repetitive elements shape embryonic chromatin landscape

    Retrotransposons are repetitive elements that form almost half of the mammalian genome. Even though they are so common, they have previously been considered to be fairly insignificant. Together with colleagues from the USA, scientists from the Helmholtz Zentrum München have now shown that r ... more

    Detour diagnosis

    In about half of all patients with rare hereditary disorders, it is still unclear what exact position of the genome is responsible for their condition. One reason for this is the enormous quantity of information encoded in human genes. Scientists from the fields of informatics and medicine ... more

Your browser is not current. Microsoft Internet Explorer 6.0 does not support some functions on Chemie.DE